Namespaces
Variants
Actions

Difference between revisions of "Lebesgue dimension"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
Line 1: Line 1:
A dimension defined by means of coverings (cf. [[Covering (of a set)|Covering (of a set)]]). It is the most important [[Dimension invariant|dimension invariant]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578301.png" /> of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578302.png" /> and was discovered by H. Lebesgue [[#References|[1]]]. He stated the conjecture that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578303.png" /> for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578304.png" />-dimensional cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578305.png" />. L.E.J. Brouwer [[#References|[2]]] was the first to prove this, as well as the stronger identity: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578306.png" />. A precise definition of the invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578307.png" /> (for the class of metric compacta) was given by P.S. Urysohn, who proved that for a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578308.png" /> of this class
+
A dimension defined by means of coverings (cf. [[Covering (of a set)]]). It is the most important [[dimension invariant]] $\dim X$ of a topological space $X$ and was discovered by H. Lebesgue [[#References|[1]]]. He stated the conjecture that $\dim I^n$ for the $n$-dimensional cube $I^n$. L.E.J. Brouwer [[#References|[2]]] was the first to prove this, as well as the stronger identity: $\dim I^n = \text{Ind}\,I^n = n$. A precise definition of the invariant $\dim X$ (for the class of metric compacta) was given by P.S. Urysohn, who proved that for a space $X$ of this class
 +
$$
 +
\dim X = \text{ind}\,X = \text{Ind}\,X
 +
$$
 +
(the Urysohn identity, see [[Dimension theory]]). This identity was extended to the class of all separable metric spaces by W. Hurewicz and L.A. Tumarkin in 1925.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l0578309.png" /></td> </tr></table>
+
For compacta $X$ the Lebesgue dimension is defined as the smallest integer $n$ having the property that for any $\epsilon > 0$ there is a finite open $\epsilon$-covering of $X$ that has multiplicity $\le n+1$; an $\epsilon$-covering of a metric space is a covering all elements of which have diameter $< \epsilon$, and the multiplicity of a finite covering of $X$ is the largest integer $k$ such that there is a point of $X$ contained in $k$ elements of the given covering. For an arbitrary normal (in particular, metrizable) space $X$ the Lebesgue dimension is the smallest integer $n$ such that for any finite open covering $\Omega$ of $X$ there is a (finite open) covering $\Lambda$ of multiplicity $n+1$ that refines it. A covering $\Lambda$ is said to be a refinement of a covering $\Omega$ if every element of $\Lambda$ is a subset of at least one element of $\Omega$.
 
 
(the Urysohn identity, see [[Dimension theory|Dimension theory]]). This identity was extended to the class of all separable metric spaces by W. Hurewicz and L.A. Tumarkin in 1925.
 
 
 
For compacta <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783010.png" /> the Lebesgue dimension is defined as the smallest integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783011.png" /> having the property that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783012.png" /> there is a finite open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783013.png" />-covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783014.png" /> that has multiplicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783015.png" />; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783017.png" />-covering of a metric space is a covering all elements of which have diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783018.png" />, and the multiplicity of a finite covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783019.png" /> is the largest integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783020.png" /> such that there is a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783021.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783022.png" /> elements of the given covering. For an arbitrary normal (in particular, metrizable) space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783023.png" /> the Lebesgue dimension is the smallest integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783024.png" /> such that for any finite open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783026.png" /> there is a (finite open) covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783027.png" /> of multiplicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783028.png" /> that refines it. A covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783029.png" /> is said to be a refinement of a covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783030.png" /> if every element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783031.png" /> is a subset of at least one element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783032.png" />.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Lebesgue,  "Sur la non-applicabilité de deux domaines appartenant à des espaces à <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783033.png" /> et <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057830/l05783034.png" /> dimensions"  ''Math. Ann.'' , '''70'''  (1911)  pp. 166–168</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.E.J. Brouwer,  "Ueber den natürlichen Dimensionsbegriff"  ''J. Reine Angew. Math.'' , '''142'''  (1913)  pp. 146–152</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  B.A. Pasynkov,  "Introduction to dimension theory" , Moscow  (1973)  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Lebesgue,  "Sur la non-applicabilité de deux domaines appartenant à des espaces à $n$ et $n+p$ dimensions"  ''Math. Ann.'' , '''70'''  (1911)  pp. 166–168</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  L.E.J. Brouwer,  "Ueber den natürlichen Dimensionsbegriff"  ''J. Reine Angew. Math.'' , '''142'''  (1913)  pp. 146–152</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  B.A. Pasynkov,  "Introduction to dimension theory" , Moscow  (1973)  (In Russian)</TD></TR>
 +
</table>
  
  
Line 16: Line 20:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)  ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.))</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)  ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.))</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Revision as of 18:20, 24 April 2016

A dimension defined by means of coverings (cf. Covering (of a set)). It is the most important dimension invariant $\dim X$ of a topological space $X$ and was discovered by H. Lebesgue [1]. He stated the conjecture that $\dim I^n$ for the $n$-dimensional cube $I^n$. L.E.J. Brouwer [2] was the first to prove this, as well as the stronger identity: $\dim I^n = \text{Ind}\,I^n = n$. A precise definition of the invariant $\dim X$ (for the class of metric compacta) was given by P.S. Urysohn, who proved that for a space $X$ of this class $$ \dim X = \text{ind}\,X = \text{Ind}\,X $$ (the Urysohn identity, see Dimension theory). This identity was extended to the class of all separable metric spaces by W. Hurewicz and L.A. Tumarkin in 1925.

For compacta $X$ the Lebesgue dimension is defined as the smallest integer $n$ having the property that for any $\epsilon > 0$ there is a finite open $\epsilon$-covering of $X$ that has multiplicity $\le n+1$; an $\epsilon$-covering of a metric space is a covering all elements of which have diameter $< \epsilon$, and the multiplicity of a finite covering of $X$ is the largest integer $k$ such that there is a point of $X$ contained in $k$ elements of the given covering. For an arbitrary normal (in particular, metrizable) space $X$ the Lebesgue dimension is the smallest integer $n$ such that for any finite open covering $\Omega$ of $X$ there is a (finite open) covering $\Lambda$ of multiplicity $n+1$ that refines it. A covering $\Lambda$ is said to be a refinement of a covering $\Omega$ if every element of $\Lambda$ is a subset of at least one element of $\Omega$.

References

[1] H. Lebesgue, "Sur la non-applicabilité de deux domaines appartenant à des espaces à $n$ et $n+p$ dimensions" Math. Ann. , 70 (1911) pp. 166–168
[2] L.E.J. Brouwer, "Ueber den natürlichen Dimensionsbegriff" J. Reine Angew. Math. , 142 (1913) pp. 146–152
[3] P.S. Aleksandrov, B.A. Pasynkov, "Introduction to dimension theory" , Moscow (1973) (In Russian)


Comments

The Lebesgue dimension is also called the covering dimension or Čech–Lebesgue dimension. The multiplicity of a covering is also called the order of the covering.

References

[a1] R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50
[a2] W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948) ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.))
How to Cite This Entry:
Lebesgue dimension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_dimension&oldid=12577
This article was adapted from an original article by P.S. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article