Lamé curve

From Encyclopedia of Mathematics
Revision as of 18:55, 7 February 2011 by (talk) (Importing text file)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A plane algebraic curve whose equation in rectangular Cartesian coordinates has the form

where , and are coprime numbers, and . The order of Lamé's curve is if and if . If , Lamé's curve is a straight line, if it is an ellipse, and if and it is an astroid. The Lamé curves are named after G. Lamé, who considered them in 1818.


[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)



[a1] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)
[a2] F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971)
How to Cite This Entry:
Lamé curve. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article