Namespaces
Variants
Actions

Lagrange bracket

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Lagrange brackets, with respect to variables $ u $ and $ v $

A sum of the form

$$ \tag{* } \sum_{i=1}^n \left ( \frac{\partial q _ {i} }{\partial u } \frac{\partial p _ {i} }{\partial v } - \frac{\partial q _ {i} }{\partial v } \frac{\partial p _ {i} }{\partial u } \right ) \equiv [ u , v ] _ {p , q } , $$

where $ q = ( q _ {1} \dots q _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $ are certain functions of $ u $ and $ v $.

If $ q = ( q _ {1} \dots q _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $ are canonical variables and $ Q = Q ( q , p ) $, $ P = P ( q , p ) $ are canonical transformations, then the Lagrange bracket is an invariant of this transformation:

$$ [ u , v ] _ {q , p } = \ [ u , v ] _ {Q , P } . $$

For this reason the indices $ q , p $ on the right-hand side of (*) are often omitted. The Lagrange bracket is said to be fundamental when the variables $ u $ and $ v $ coincide with some pair of the $ 2n $ variables $ q , p $. From them one can form three matrices:

$$ [ p , p ] = \ \{ [ p _ {i} , p _ {j} ] \} _ {i , j = 1 } ^ {n} ,\ \ [ q , q ] ,\ [ q , p ] , $$

the first two of which are the zero, and the last one is the unit matrix. There is a definite connection between Lagrange brackets and Poisson brackets. Namely, if the functions $ u _ {i} = u _ {i} ( q , p ) $, $ 1 \leq i \leq n $, induce a diffeomorphism $ \mathbf R ^ {2n} \rightarrow \mathbf R ^ {2n} $, then the matrices formed from the elements $ [ u _ {i} , u _ {j} ] $ and $ ( u _ {j} , u _ {i} ) $ are inverse to each other.

References

[1] J.L. Lagrange, "Oeuvres" , 6 , Gauthier-Villars (1873)
[2] E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944)
[3] A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian)
[4] H. Goldstein, "Classical mechanics" , Addison-Wesley (1957)

Comments

If $ \psi $ denotes the mapping: $ ( u , v) \mapsto ( q ( u , v), p ( u , v)) $, then the Lagrange bracket is equal to the product of the vectors $ {\partial \psi } / {\partial u } $ and $ {\partial \psi } / {\partial v } $ with respect to the canonical symplectic form (cf. Symplectic manifold) on the phase space. More generally, if $ \omega $ is a symplectic form on a smooth manifold $ M $ and $ \psi $ is a smooth mapping from a surface $ S $ to $ M $, then $ \psi ^ {*} \omega $ is an area form on $ S $. If $ ds $ is a standard area form on $ S $, then the function $ \psi ^ {*} \omega /ds $ on $ S $ could be called the Lagrange brackets of $ \psi $. See [a1], Chapt. 3.

References

[a1] R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin/Cummings (1978)
[a2] F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian)
How to Cite This Entry:
Lagrange bracket. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_bracket&oldid=54992
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article