Namespaces
Variants
Actions

Difference between revisions of "Lacunary power series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 
A series
 
A series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
\begin{equation}\label{lac} f(z)=\sum_{k=1}^\infty a_kz^{\lambda_k}\end{equation}
  
with gaps (lacunas), so that the exponents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570702.png" /> do not run through all the natural numbers. Depending on the properties of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570703.png" /> one obtains many properties of the series (*). Thus, if
+
with gaps (lacunas), so that the exponents $\lambda_1,\lambda_2,\ldots,$ do not run through all the natural numbers. Depending on the properties of the sequence $\{\lambda_k\}$ one obtains many properties of the series \ref{lac}. Thus, if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570704.png" /></td> </tr></table>
+
$$\lambda_{k+1}-\lambda_k>\theta\lambda_k,\quad k=0,1,\ldots,\quad \theta>0,$$
  
and the series (*) converges in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570706.png" />, then all points of the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570707.png" /> are singular for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570708.png" /> (Hadamard's gap theorem). A strengthening of this theorem is Fabry's gap theorem (cf. [[Fabry theorem|Fabry theorem]]). If the lower density
+
and the series \ref{lac} converges in the disc $\lvert z\rvert<R$, $0<R<\infty$, then all points of the circle $\lvert z\rvert=R$ are singular for $f(z)$ ([[Hadamard theorem#Hadamard's gap theorem|Hadamard's gap theorem]]). A strengthening of this theorem is Fabry's gap theorem (cf. [[Fabry theorem|Fabry theorem]]). If the lower density
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l0570709.png" /></td> </tr></table>
+
$$\liminf_{k\to\infty}\frac{k}{\lambda_k}=0,$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057070/l05707010.png" /> is a single-valued analytic function with simply-connected domain of existence (Pólya's theorem). See also [[Over-convergence|Over-convergence]].
+
then $f(z)$ is a single-valued analytic function with simply-connected domain of existence (Pólya's theorem). See also [[Over-convergence|Over-convergence]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"L. Bieberbach,  "Analytische Fortsetzung" , Springer  (1955)  pp. Sect. 3</TD></TR></table>
+
{|
 
+
|-
 
+
|valign="top"|{{Ref|Bi}}||valign="top"| L. Bieberbach,  "Analytische Fortsetzung" , Springer  (1955)  pp. Sect. 3
 
+
|-
====Comments====
+
|valign="top"|{{Ref|Di}}||valign="top"| P. Dienes,  "The Taylor series" , Oxford Univ. Press &amp; Dover (1957)
 
+
|-
 
+
|valign="top"|{{Ref|Ti}}||valign="top"| E.C. Titchmarsh,  "The theory of functions" , Oxford Univ. Press  (1979)
====References====
+
|-
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.C. Titchmarsh,  "The theory of functions" , Oxford Univ. Press  (1979)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Dienes,  "The Taylor series" , Oxford Univ. Press &amp; Dover (1957)</TD></TR></table>
+
|}

Revision as of 06:16, 22 April 2012

A series

\begin{equation}\label{lac} f(z)=\sum_{k=1}^\infty a_kz^{\lambda_k}\end{equation}

with gaps (lacunas), so that the exponents $\lambda_1,\lambda_2,\ldots,$ do not run through all the natural numbers. Depending on the properties of the sequence $\{\lambda_k\}$ one obtains many properties of the series \ref{lac}. Thus, if

$$\lambda_{k+1}-\lambda_k>\theta\lambda_k,\quad k=0,1,\ldots,\quad \theta>0,$$

and the series \ref{lac} converges in the disc $\lvert z\rvert<R$, $0<R<\infty$, then all points of the circle $\lvert z\rvert=R$ are singular for $f(z)$ (Hadamard's gap theorem). A strengthening of this theorem is Fabry's gap theorem (cf. Fabry theorem). If the lower density

$$\liminf_{k\to\infty}\frac{k}{\lambda_k}=0,$$

then $f(z)$ is a single-valued analytic function with simply-connected domain of existence (Pólya's theorem). See also Over-convergence.

References

[Bi] L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3
[Di] P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957)
[Ti] E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979)
How to Cite This Entry:
Lacunary power series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lacunary_power_series&oldid=24997
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article