Namespaces
Variants
Actions

Korn inequality

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 74B05 Secondary: 74B20 [MSN][ZBL]

An inequality concerning the derivatives of vector functions $f:\mathbb R^n\to \mathbb R^n$. Assuming that $f$ is continuosly differentiable, we denote by $Df$ the Jacobian matrix of its differential and by $D^s f$ its symmetric part, namely the matrix with entries \[ \frac{1}{2} \left(\frac{\partial f_j}{\partial x_i} + \frac{\partial f_i}{\partial x_j}\right)\, . \] Denoting by $|Df|$ and $|D^s f|$ the corresponding Hilbert-Schmidt norms, the original inequality of Korn (see [K2]) states that, if $f\in C^1_c (\mathbb R^n)$, then \[ \int |Df|^2 \leq 2 \int |D^s f|^2\, . \] In fact, when $f$ is $C^2$ a simple integration by parts yields the identity \[ \int |D^s f|^2 = \frac{1}{2} \int |D f|^2 + \frac{1}{2} \int ({\rm div}\, f)^2 \] from which Korn's inequality is obvious. A standard approximation procedure yields then the general statement: in fact for the same reason the inequality holds for functions in the Sobolev class $H^1_0$. The Korn's inequality can also be concluded easily using the Fourier Transform.

The inequality has been subsequently generalized to

  • $f\in W^{1,2} (\Omega)$, under the assumption that $\Omega$ is bounded and $\partial \Omega$ sufficiently regular (Lipschitz is sufficient);
  • $f\in W^{1,p}_0 (\mathbb R^n)$ and $f\in W^{1,p} (\Omega)$ (again under the assumption that $\Omega$ is bounded and the boundary sufficiently regular) for $p\in ]1, \infty[$, in which case the inequality takes the form

\[ \|Du\|_{L^p} \leq C \|D^s u\|_{L^p}\, , \] where the constant $C$ depends, additionally, upon $p$.

The latter generalization uses the Calderon-Zygmund estimates for singular integral operators, see for instance [C]. The cases $p = 1, \infty$ of the inequality are false, as implied by a more general theorem of Ornstein about the failure of $L^1$ estimates for general singular integral operators, see [O]. For a modern proof the reader might consult [CFM].

The Korn inequality has several applications in the theory of nonlinear elasticity (and was in fact originally derived by Korn in linear elasticity, see [K]); cf. [C2], [F].

References

[C] P. G. Ciarlet, "On Korn's inequality", Chinese Ann. Math., Ser B 31 (2010), pp. 607-618.
[C2] P. G. Ciarlet, "Mathematical Elasticity", Vol. I : Three-Dimensional Elasticity, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam, 1988.
[CFM] S. Conti, D. Faraco, F. Maggi, "A new approach to counterexamples to $L^1$ estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions", Arch. Rat. Mech. Anal. 175, (2005), pp. 287-300.
[K] A. Korn, "Solution general du probleme d'equilibre dans la theorie de l'elasticite", Annales de la Faculte de Sciences de Toulouse, 10, (1908), pp. 705-724
[K2] A. Korn, "Ueber einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen", Bulletin internationale de l'Academie de Sciences de Cracovie, 9, (1909), pp. 705-724
[O] D. Ornstein, "A non-inequality for differential operators in the $L^1$ norm", Arch. Rational Mech. Anal.,11, (1962), pp. 40–49
[F] G. Fichera, "Existence theorems in elasticity theory", Handbuch der Physik, VIa/2, Springer (1972) pp. 347–389
How to Cite This Entry:
Korn inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Korn_inequality&oldid=30665
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article