Namespaces
Variants
Actions

Kelvin functions

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Thomson functions

The functions $ \mathop{\rm ber} ( z) $ and $ \mathop{\rm bei} ( z) $, $ \mathop{\rm her} ( z) $ and $ \mathop{\rm hei} ( z) $, $ \mathop{\rm ker} ( z) $ and $ \mathop{\rm kei} ( z) $, defined by

$$ \mathop{\rm ber} _ \nu ( z) \pm \mathop{\rm bei} _ \nu ( z) = J _ \nu ( z e ^ {\pm 3 i \pi / 4 } ) , $$

$$ \mathop{\rm her} _ \nu ( z) + i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , $$

$$ \mathop{\rm her} _ \nu ( z) - i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , $$

$$ \mathop{\rm ker} _ \nu ( z) + i \mathop{\rm kei} _ \nu ( z) = \frac{i \pi }{2} H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , $$

$$ \mathop{\rm ker} _ \nu ( z) - i \mathop{\rm kei} _ \nu ( z) = - \frac{i \pi }{2} H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , $$

where the $ H _ \nu $ are the Hankel functions and the $ J _ \nu $ are the Bessel functions. When $ \nu = 0 $ the index is omitted. The Kelvin functions form a fundamental system of solutions of the equation

$$ z ^ {2} y ^ {\prime\prime} + z y ^ \prime - ( i z ^ {2} + \nu ^ {2} ) y = 0 , $$

which for $ z = \sqrt i x $ turns into the Bessel equation.

The series representations are:

$$ \mathop{\rm ber} ( z) = \ \sum _ {k=0}^ \infty \frac{( - 1 ) ^ {k} z ^ {4k} }{2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } , $$

$$ \mathop{\rm ber} ( z) = \sum _ {k=0} ^ \infty \frac{( - 1 ) ^ {k} z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } , $$

$$ \mathop{\rm ker} ( z) = \left ( \mathop{\rm ln} \frac{2}{z} - C \right ) \mathop{\rm ber} ( z) + \frac \pi {4} \mathop{\rm bei} ( z) + $$

$$ + \sum _ {k=0} ^ \infty ( - 1 ) ^ {k} \frac{z ^ {4k} }{ 2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } \sum _ { m= 1} ^ { 2k } \frac{1}{m} , $$

$$ \mathop{\rm kei} ( z) = \left ( \mathop{\rm ln} \frac{2}{z} - C \right ) \mathop{\rm bei} ( z) - \frac \pi {4} \mathop{\rm ber} ( z) + $$

$$ + \sum _ {k=0}^ \infty ( - 1 ) ^ {k} \frac{z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } \sum _ { m= 1} ^ { 2k+ 1 } \frac{1}{m} . $$

The asymptotic representations are:

$$ \mathop{\rm ber} ( z) = \ \frac{e ^ {\alpha ( z) } }{\sqrt {2 \pi z } } \ \cos \beta ( z) , $$

$$ \mathop{\rm ber} ( z) = \frac{e ^ {\alpha ( z) } }{ \sqrt {2 \pi z } } \sin \beta ( z) , $$

$$ \mathop{\rm ker} ( z) = \sqrt { \frac \pi {2z} } e ^ {\alpha ( - z ) } \cos \beta ( - z ) , $$

$$ \mathop{\rm kei} ( z) = \sqrt { \frac \pi {2z} } e ^ {\alpha ( - z ) } \sin \beta ( - z ) , $$

$$ | \mathop{\rm arg} z | < \frac{5}{4} \pi , $$

where

$$ \alpha ( z) \sim \ \frac{z}{\sqrt 2 } + \frac{1}{8 z \sqrt 2 } - \frac{25}{384 z ^ {3} \sqrt 2 } - \frac{13}{128 z ^ {4} } - \dots , $$

$$ \beta ( z) \sim \frac{z}{\sqrt 2} - \frac \pi {8} - \frac{1}{8 z \sqrt 2 } - \frac{1}{384 z ^ {3} \sqrt 2 } + \dots . $$

These functions were introduced by W. Thomson (Lord Kelvin, [1]).

References

[1] W. Thomson, "Mathematical and physical papers" , 3 , Cambridge Univ. Press (1980) pp. 492
[2] E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966)
[3] I.S. Gradshtein, I.M. Ryzhik, "Table of integrals, series and products" , Acad. Press (1973) (Translated from Russian)
[a1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965)
How to Cite This Entry:
Kelvin functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kelvin_functions&oldid=54834
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article