Namespaces
Variants
Actions

Jump function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26A45 Secondary: 28A15 [MSN][ZBL]

One of the three components in the Lebesgue decomposition of a function of bounded variation depending on one real variable, rediscovered and extended to functions of several variables by De Giorgi and his school (see [AFP]). According to Lebesgue, if $I\subset\mathbb R$ is an interval, a right-continuous function of bounded variation $f: I\to\mathbb R$ can be decomposed in a canonical way into three functions $f_a+f_j+f_c$. The function $f_j$ is the jump part of $f$ (or jump function of $f$, using the terminology of Lebesgue [Le]) and it is defined by \begin{equation}\label{e:jump} f_j (x)= \sum_{y\leq x}\, f (y^+) - f(y^-)\, . \end{equation} Therefore its distributional derivative is the atomic part of the distributional derivative of $f$. The jump part can also be characterized as the (right-continuous) function $g$ with smallest variation such that $f-g$ is continuous (cp. with Remark 1 at page 163 of [Le]). Observe therefore that the total variation of $f$ is the sum of the total variation of $f_j$ and the total variation of $f-f_j$.

The term jump function is used also for those functions of bounded variation $f$ such that $f=f_j$, i.e. so that their distributional derivative is a purely atomic measure. See also Atom.

References

[AFP] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory", 1, Interscience (1958) MR0117523 Zbl 0635.47001
[Ha] P.R. Halmos, "Measure theory", v. Nostrand (1950) MR0033869 Zbl 0040.16802
[Le] H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives", Gauthier-Villars (1928).
[Na] I.P. Natanson, "Theorie der Funktionen einer reellen Veränderlichen" , H. Deutsch , Frankfurt a.M. (1961) (Translated from Russian)
[Sa] S. Saks, "Theory of the integral" , Hafner (1952) MR0167578 Zbl 63.0183.05
[Sz] B. Szökefalvi-Nagy, "Introduction to real functions and orthogonal expansions" , Oxford Univ. Press (1965)
How to Cite This Entry:
Jump function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jump_function&oldid=29190
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article