Namespaces
Variants
Actions

Difference between revisions of "Jordan-Dedekind space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100601.png" /> be a [[Closure space|closure space]] on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100602.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100603.png" />, partially ordered by set-inclusion, form a complete atomic [[Lattice|lattice]] [[#References|[a3]]] (cf. also [[Atom|Atom]]). For any subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100604.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100605.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100606.png" /> denote the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100607.png" />. A chain in a closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100608.png" /> is a totally ordered set of closed subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j1100609.png" />. The rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006010.png" /> of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006011.png" /> is
+
<!--
 +
j1100601.png
 +
$#A+1 = 32 n = 0
 +
$#C+1 = 32 : ~/encyclopedia/old_files/data/J110/J.1100060 Jordan\ANDDedekind space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Let  $  {\mathcal C} $
 +
be a [[Closure space|closure space]] on a set  $  S $.
 +
The elements of  $  {\mathcal C} $,
 +
partially ordered by set-inclusion, form a complete atomic [[Lattice|lattice]] [[#References|[a3]]] (cf. also [[Atom|Atom]]). For any subset  $  X $
 +
of  $  S $,
 +
let  $  \langle  X \rangle $
 +
denote the closure of  $  X $.  
 +
A chain in a closed set  $  A $
 +
is a totally ordered set of closed subsets of  $  A $.  
 +
The rank  $  r ( X ) $
 +
of a set  $  X $
 +
is
 +
 
 +
$$
 +
\max  \left \{ {\left | M \right | } : {M  \textrm{ a  chain  of  }  \left \langle  X \right \rangle } \right \} - 1 .
 +
$$
  
 
A Jordan–Dedekind space is a closure space of finite rank satisfying the Jordan–Dedekind chain condition (see [[Jordan–Dedekind lattice|Jordan–Dedekind lattice]]).
 
A Jordan–Dedekind space is a closure space of finite rank satisfying the Jordan–Dedekind chain condition (see [[Jordan–Dedekind lattice|Jordan–Dedekind lattice]]).
  
Characterizations of Jordan–Dedekind spaces in terms of an exchange property and in terms of independence were given by L.M. Batten in [[#References|[a1]]] and [[#References|[a2]]]. In particular, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006013.png" /> be a closure space. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006014.png" /> is said to have the weak exchange property if for all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006016.png" /> and subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006018.png" />,
+
Characterizations of Jordan–Dedekind spaces in terms of an exchange property and in terms of independence were given by L.M. Batten in [[#References|[a1]]] and [[#References|[a2]]]. In particular, let $  {\mathcal C} $
 +
be a closure space. $  {\mathcal C} $
 +
is said to have the weak exchange property if for all elements $  y $
 +
of $  S $
 +
and subsets $  X $
 +
of $  S $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006019.png" /></td> </tr></table>
+
$$
 +
r ( \left \langle  {X \cup \{ y \} } \right \rangle ) = 1 + r ( \left \langle  X \right \rangle ) .
 +
$$
  
 
The following theorem holds: In any closure space of finite rank, the weak exchange property is equivalent to the Jordan–Dedekind chain condition (cf. [[Jordan–Dedekind property|Jordan–Dedekind property]]).
 
The following theorem holds: In any closure space of finite rank, the weak exchange property is equivalent to the Jordan–Dedekind chain condition (cf. [[Jordan–Dedekind property|Jordan–Dedekind property]]).
  
The notion of an independent set is recursively defined: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006020.png" /> is independent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006021.png" /> or a singleton; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006022.png" /> is independent if for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006024.png" /> is independent and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006025.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006026.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006028.png" />-independent if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006030.png" />.
+
The notion of an independent set is recursively defined: $  X $
 +
is independent if $  X = \emptyset $
 +
or a singleton; $  X $
 +
is independent if for some $  x \in X $,  
 +
$  X \setminus  \{ x \} $
 +
is independent and $  x \notin \langle  {X \setminus  \{ x \} } \rangle $.  
 +
The set $  X $
 +
is $  m $-
 +
independent if for all $  x \in X $,  
 +
$  x \notin \langle  {X \setminus  \{ x \} } \rangle $.
  
The following theorem holds: For a Jordan–Dedekind space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006031.png" /> the following assertions are equivalent: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006032.png" /> is a [[Matroid|matroid]] [[#References|[a4]]]; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j110/j110060/j11006033.png" />-independence and independence are the same.
+
The following theorem holds: For a Jordan–Dedekind space $  {\mathcal C} $
 +
the following assertions are equivalent: 1) $  {\mathcal C} $
 +
is a [[Matroid|matroid]] [[#References|[a4]]]; and 2) $  m $-
 +
independence and independence are the same.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.M. Batten,  "A rank-associated notion of independence" , ''Finite Geometries'' , M. Dekker  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.M. Batten,  "Jordan–Dedekind spaces"  ''Quart. J. Math. Oxford'' , '''35'''  (1984)  pp. 373–381</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , Amer. Math. Soc.  (1967)  (Edition: Third)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D.J.A. Welsh,  "Matroid theory" , Acad. Press  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.M. Batten,  "A rank-associated notion of independence" , ''Finite Geometries'' , M. Dekker  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.M. Batten,  "Jordan–Dedekind spaces"  ''Quart. J. Math. Oxford'' , '''35'''  (1984)  pp. 373–381</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , Amer. Math. Soc.  (1967)  (Edition: Third)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D.J.A. Welsh,  "Matroid theory" , Acad. Press  (1976)</TD></TR></table>

Latest revision as of 22:14, 5 June 2020


Let $ {\mathcal C} $ be a closure space on a set $ S $. The elements of $ {\mathcal C} $, partially ordered by set-inclusion, form a complete atomic lattice [a3] (cf. also Atom). For any subset $ X $ of $ S $, let $ \langle X \rangle $ denote the closure of $ X $. A chain in a closed set $ A $ is a totally ordered set of closed subsets of $ A $. The rank $ r ( X ) $ of a set $ X $ is

$$ \max \left \{ {\left | M \right | } : {M \textrm{ a chain of } \left \langle X \right \rangle } \right \} - 1 . $$

A Jordan–Dedekind space is a closure space of finite rank satisfying the Jordan–Dedekind chain condition (see Jordan–Dedekind lattice).

Characterizations of Jordan–Dedekind spaces in terms of an exchange property and in terms of independence were given by L.M. Batten in [a1] and [a2]. In particular, let $ {\mathcal C} $ be a closure space. $ {\mathcal C} $ is said to have the weak exchange property if for all elements $ y $ of $ S $ and subsets $ X $ of $ S $,

$$ r ( \left \langle {X \cup \{ y \} } \right \rangle ) = 1 + r ( \left \langle X \right \rangle ) . $$

The following theorem holds: In any closure space of finite rank, the weak exchange property is equivalent to the Jordan–Dedekind chain condition (cf. Jordan–Dedekind property).

The notion of an independent set is recursively defined: $ X $ is independent if $ X = \emptyset $ or a singleton; $ X $ is independent if for some $ x \in X $, $ X \setminus \{ x \} $ is independent and $ x \notin \langle {X \setminus \{ x \} } \rangle $. The set $ X $ is $ m $- independent if for all $ x \in X $, $ x \notin \langle {X \setminus \{ x \} } \rangle $.

The following theorem holds: For a Jordan–Dedekind space $ {\mathcal C} $ the following assertions are equivalent: 1) $ {\mathcal C} $ is a matroid [a4]; and 2) $ m $- independence and independence are the same.

References

[a1] L.M. Batten, "A rank-associated notion of independence" , Finite Geometries , M. Dekker (1983)
[a2] L.M. Batten, "Jordan–Dedekind spaces" Quart. J. Math. Oxford , 35 (1984) pp. 373–381
[a3] G. Birkhoff, "Lattice theory" , Colloq. Publ. , Amer. Math. Soc. (1967) (Edition: Third)
[a4] D.J.A. Welsh, "Matroid theory" , Acad. Press (1976)
How to Cite This Entry:
Jordan-Dedekind space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jordan-Dedekind_space&oldid=15264
This article was adapted from an original article by L.M. Batten (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article