Namespaces
Variants
Actions

Difference between revisions of "Jacobian conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 78 formulas out of 79 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 79 formulas, 78 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
''Keller problem''
 
''Keller problem''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200101.png" /> be a polynomial mapping, i.e. each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200102.png" /> is a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200103.png" /> variables. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200104.png" /> has a polynomial mapping as an inverse, then the chain rule implies that the [[Determinant|determinant]] of the [[Jacobi matrix|Jacobi matrix]] is a non-zero constant. In 1939, O.H. Keller asked: is the converse true?, i.e. does <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200105.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200106.png" /> has a polynomial inverse?, [[#References|[a4]]]. This problem is now known as Keller's problem but is more often called the Jacobian conjecture. This conjecture is still open (1999) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200107.png" />. Polynomial mappings satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200108.png" /> are called Keller mappings. Various special cases have been proved:
+
Let $F = ( F _ { 1 } , \dots , F _ { n } ) : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ be a polynomial mapping, i.e. each $F_{i}$ is a polynomial in $n$ variables. If $F$ has a polynomial mapping as an inverse, then the chain rule implies that the [[Determinant|determinant]] of the [[Jacobi matrix|Jacobi matrix]] is a non-zero constant. In 1939, O.H. Keller asked: is the converse true?, i.e. does $\operatorname{det} JF \in \mathbf{C}^*$ imply that $F$ has a polynomial inverse?, [[#References|[a4]]]. This problem is now known as Keller's problem but is more often called the Jacobian conjecture. This conjecture is still open (1999) for all $n \geq 2$. Polynomial mappings satisfying $\operatorname{det} JF \in \mathbf{C}^*$ are called Keller mappings. Various special cases have been proved:
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200109.png" />, the conjecture holds (S.S. Wang). Furthermore, it suffices to prove the conjecture for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001010.png" /> and all Keller mappings of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001011.png" /> where each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001012.png" /> is either zero or homogeneous of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001013.png" /> (H. Bass, E. Connell, D. Wright, A. Yagzhev). This case is referred to as the cubic homogeneous case. In fact, it even suffices to prove the conjecture for so-called cubic-linear mappings, i.e. cubic homogeneous mappings such that each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001014.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001015.png" />, where each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001016.png" /> is a linear form (L. Drużkowski). The cubic homogeneous case has been verified for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001017.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001018.png" /> was settled by D. Wright; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001019.png" /> was settled by E. Hubbers).
+
1) if $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$, the conjecture holds (S.S. Wang). Furthermore, it suffices to prove the conjecture for all $n \geq 2$ and all Keller mappings of the form $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ where each $H _ { i }$ is either zero or homogeneous of degree $3$ (H. Bass, E. Connell, D. Wright, A. Yagzhev). This case is referred to as the cubic homogeneous case. In fact, it even suffices to prove the conjecture for so-called cubic-linear mappings, i.e. cubic homogeneous mappings such that each $H _ { i }$ is of the form $l _ { i } ^ { 3 }$, where each $l_i$ is a linear form (L. Drużkowski). The cubic homogeneous case has been verified for $n \leq 4$ ($n = 3$ was settled by D. Wright; $n = 4$ was settled by E. Hubbers).
  
2) A necessary condition for the Jacobian conjecture to hold for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001020.png" /> is that for Keller mappings of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001021.png" /> with all non-zero coefficients in each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001022.png" /> positive, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001023.png" /> is injective (cf. also [[Injection|Injection]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001024.png" /> denotes the homogeneous part of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001026.png" />. It is known that this condition is also sufficient! (J. Yu). On the other hand, the Jacobian conjecture holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001027.png" /> and all Keller mappings of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001028.png" />, where each non-zero coefficient of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001029.png" /> is negative (also J. Yu).
+
2) A necessary condition for the Jacobian conjecture to hold for all $n \geq 2$ is that for Keller mappings of the form $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ with all non-zero coefficients in each $F_{ ( i )}$ positive, the mapping $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is injective (cf. also [[Injection|Injection]]), where $F_{ ( i )}$ denotes the homogeneous part of degree $i$ of $F$. It is known that this condition is also sufficient! (J. Yu). On the other hand, the Jacobian conjecture holds for all $n \geq 2$ and all Keller mappings of the form $X + F _{( 2 )} + \ldots + F _{( d )}$, where each non-zero coefficient of all $F_{ ( i )}$ is negative (also J. Yu).
  
3) The Jacobian conjecture has been verified under various additional assumptions. Namely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001030.png" /> has a rational inverse (O.H. Keller) and, more generally, if the field extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001031.png" /> is a [[Galois extension|Galois extension]] (L.A. Campbell). Also, properness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001032.png" /> or, equivalently, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001033.png" /> is finite over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001034.png" /> (cf. also [[Extension of a field|Extension of a field]]) implies that a Keller mapping is invertible.
+
3) The Jacobian conjecture has been verified under various additional assumptions. Namely, if $F$ has a rational inverse (O.H. Keller) and, more generally, if the field extension $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ is a [[Galois extension|Galois extension]] (L.A. Campbell). Also, properness of $F$ or, equivalently, if $\mathbf{C} [ X ]$ is finite over $\mathbf{C} [ F ]$ (cf. also [[Extension of a field|Extension of a field]]) implies that a Keller mapping is invertible.
  
4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001035.png" />, the Jacobian conjecture has been verified for all Keller mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001036.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png" /> (T.T. Moh) and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001038.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001039.png" /> is a product of at most two prime numbers (H. Applegate, H. Onishi). Finally, if there exists one line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001040.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001041.png" /> is injective, then a Keller mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001042.png" /> is invertible (J. Gwozdziewicz). There are various seemingly unrelated formulations of the Jacobian conjecture. For example,
+
4) If $n = 2$, the Jacobian conjecture has been verified for all Keller mappings $F$ with $\operatorname { deg } F \leq 100$ (T.T. Moh) and if $\operatorname { deg } F _ { 1 }$ or $\operatorname { deg } F _ { 2 }$ is a product of at most two prime numbers (H. Applegate, H. Onishi). Finally, if there exists one line $l \subset \mathbf{C} ^ { 2 }$ such that $F | _ { l } : l \rightarrow \mathbf{C} ^ { 2 }$ is injective, then a Keller mapping $F$ is invertible (J. Gwozdziewicz). There are various seemingly unrelated formulations of the Jacobian conjecture. For example,
  
a) up to a polynomial coordinate change, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001043.png" /> is the only commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001044.png" />-basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001045.png" />;
+
a) up to a polynomial coordinate change, $( \partial _ { 1 } , \dots , \partial _ { n } )$ is the only commutative $\mathbf{C} [ X ]$-basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001045.png"/>;
  
b) every order-preserving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001046.png" />-endomorphism of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001047.png" />th [[Weyl algebra|Weyl algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001048.png" /> is an isomorphism (A. van den Essen).
+
b) every order-preserving $\mathbf{C}$-endomorphism of the $n$th [[Weyl algebra|Weyl algebra]] $A _ { n }$ is an isomorphism (A. van den Essen).
  
c) for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001049.png" /> there exists a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001050.png" /> such that for every commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001051.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001052.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001053.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001055.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001056.png" /> (H. Bass).
+
c) for every $d , n \geq 1$ there exists a constant $C ( n , d ) &gt; 0$ such that for every commutative $\mathbf{Q}$-algebra $R$ and every $F \in \operatorname { Aut } _ { R } R [ X ]$ with $\operatorname { det } J F = 1$ and $\operatorname { deg } F \leq d$, one has $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ (H. Bass).
  
d) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001057.png" /> is a polynomial mapping such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001058.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001060.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001061.png" />.
+
d) if $F : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ is a polynomial mapping such that $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ for some $z \in \mathbf{C} ^ { n }$, then $F ( a ) = F ( b )$ for some $a \neq b \in {\bf C} ^ { n }$.
  
e) if, in the last formulation, one replaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001062.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001063.png" /> the so-called real Jacobian conjecture is obtained, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001064.png" /> is a polynomial mapping such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001065.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001066.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001067.png" /> is injective. It was shown in 1994 (S. Pinchuk) that this conjecture is false for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001068.png" />. Another conjecture, formulated by L. Markus and H. Yamabe in 1960 is the global asymptotic stability Jacobian conjecture, also called the Markus–Yamabe conjecture. It asserts that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001069.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001070.png" />-mapping with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001071.png" /> and such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001072.png" /> the real parts of all eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001073.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001074.png" />, then each solution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001075.png" /> tends to zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001076.png" /> tends to infinity. The Markus–Yamabe conjecture (for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001077.png" />) implies the Jacobian conjecture. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001078.png" /> the Markus–Yamabe conjecture was proved to be true (R. Fessler, C. Gutierrez). However, in 1995 polynomial counterexamples where found for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001079.png" /> (A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Mañosas).
+
e) if, in the last formulation, one replaces $\mathbf{C}$ by $\mathbf{R}$ the so-called real Jacobian conjecture is obtained, i.e. if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a polynomial mapping such that $\operatorname { det } J F ( x ) \neq 0$ for all $x \in \mathbf{R} ^ { n }$, then $F$ is injective. It was shown in 1994 (S. Pinchuk) that this conjecture is false for $n \geq 2$. Another conjecture, formulated by L. Markus and H. Yamabe in 1960 is the global asymptotic stability Jacobian conjecture, also called the Markus–Yamabe conjecture. It asserts that if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a $C ^ { 1 }$-mapping with $F ( 0 ) = 0$ and such that for all $x \in \mathbf{R} ^ { n }$ the real parts of all eigenvalues of $J F ( x )$ are $&lt; 0$, then each solution of $\dot { y } ( t ) = F ( y ( t ) )$ tends to zero if $t$ tends to infinity. The Markus–Yamabe conjecture (for all $n$) implies the Jacobian conjecture. For $n = 2$ the Markus–Yamabe conjecture was proved to be true (R. Fessler, C. Gutierrez). However, in 1995 polynomial counterexamples where found for all $n \geq 3$ (A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Mañosas).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. van den Essen,  "Polynomial automorphisms and the Jacobian conjecture"  J. Alev (ed.)  et al. (ed.) , ''Algèbre Noncommutative, Groupes Quantiques et Invariants'' , SMF  (1985)  pp. 55–81</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. van den Essen,  "Seven lectures on polynomial automorphisms"  A. van den Essen (ed.) , ''Automorphisms of Affine Spaces'' , Kluwer Acad. Publ.  (1995)  pp. 3–39</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Bass,  E.H. Connell,  D. Wright,  "The Jacobian conjecture: reduction of degree and formal expansion of the inverse"  ''Bull. Amer. Math. Soc.'' , '''7'''  (1982)  pp. 287–330</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  O.H. Keller,  "Ganze Cremonatransformationen"  ''Monatschr. Math. Phys.'' , '''47'''  (1939)  pp. 229–306</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. van den Essen,  "Polynomial automorphisms and the Jacobian conjecture" , Birkhäuser  (to appear in 2000)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. van den Essen,  "Polynomial automorphisms and the Jacobian conjecture"  J. Alev (ed.)  et al. (ed.) , ''Algèbre Noncommutative, Groupes Quantiques et Invariants'' , SMF  (1985)  pp. 55–81</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  A. van den Essen,  "Seven lectures on polynomial automorphisms"  A. van den Essen (ed.) , ''Automorphisms of Affine Spaces'' , Kluwer Acad. Publ.  (1995)  pp. 3–39</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  H. Bass,  E.H. Connell,  D. Wright,  "The Jacobian conjecture: reduction of degree and formal expansion of the inverse"  ''Bull. Amer. Math. Soc.'' , '''7'''  (1982)  pp. 287–330</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  O.H. Keller,  "Ganze Cremonatransformationen"  ''Monatschr. Math. Phys.'' , '''47'''  (1939)  pp. 229–306</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  A. van den Essen,  "Polynomial automorphisms and the Jacobian conjecture" , Birkhäuser  (to appear in 2000)</td></tr></table>

Revision as of 16:55, 1 July 2020

Keller problem

Let $F = ( F _ { 1 } , \dots , F _ { n } ) : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ be a polynomial mapping, i.e. each $F_{i}$ is a polynomial in $n$ variables. If $F$ has a polynomial mapping as an inverse, then the chain rule implies that the determinant of the Jacobi matrix is a non-zero constant. In 1939, O.H. Keller asked: is the converse true?, i.e. does $\operatorname{det} JF \in \mathbf{C}^*$ imply that $F$ has a polynomial inverse?, [a4]. This problem is now known as Keller's problem but is more often called the Jacobian conjecture. This conjecture is still open (1999) for all $n \geq 2$. Polynomial mappings satisfying $\operatorname{det} JF \in \mathbf{C}^*$ are called Keller mappings. Various special cases have been proved:

1) if $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$, the conjecture holds (S.S. Wang). Furthermore, it suffices to prove the conjecture for all $n \geq 2$ and all Keller mappings of the form $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ where each $H _ { i }$ is either zero or homogeneous of degree $3$ (H. Bass, E. Connell, D. Wright, A. Yagzhev). This case is referred to as the cubic homogeneous case. In fact, it even suffices to prove the conjecture for so-called cubic-linear mappings, i.e. cubic homogeneous mappings such that each $H _ { i }$ is of the form $l _ { i } ^ { 3 }$, where each $l_i$ is a linear form (L. Drużkowski). The cubic homogeneous case has been verified for $n \leq 4$ ($n = 3$ was settled by D. Wright; $n = 4$ was settled by E. Hubbers).

2) A necessary condition for the Jacobian conjecture to hold for all $n \geq 2$ is that for Keller mappings of the form $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ with all non-zero coefficients in each $F_{ ( i )}$ positive, the mapping $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is injective (cf. also Injection), where $F_{ ( i )}$ denotes the homogeneous part of degree $i$ of $F$. It is known that this condition is also sufficient! (J. Yu). On the other hand, the Jacobian conjecture holds for all $n \geq 2$ and all Keller mappings of the form $X + F _{( 2 )} + \ldots + F _{( d )}$, where each non-zero coefficient of all $F_{ ( i )}$ is negative (also J. Yu).

3) The Jacobian conjecture has been verified under various additional assumptions. Namely, if $F$ has a rational inverse (O.H. Keller) and, more generally, if the field extension $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ is a Galois extension (L.A. Campbell). Also, properness of $F$ or, equivalently, if $\mathbf{C} [ X ]$ is finite over $\mathbf{C} [ F ]$ (cf. also Extension of a field) implies that a Keller mapping is invertible.

4) If $n = 2$, the Jacobian conjecture has been verified for all Keller mappings $F$ with $\operatorname { deg } F \leq 100$ (T.T. Moh) and if $\operatorname { deg } F _ { 1 }$ or $\operatorname { deg } F _ { 2 }$ is a product of at most two prime numbers (H. Applegate, H. Onishi). Finally, if there exists one line $l \subset \mathbf{C} ^ { 2 }$ such that $F | _ { l } : l \rightarrow \mathbf{C} ^ { 2 }$ is injective, then a Keller mapping $F$ is invertible (J. Gwozdziewicz). There are various seemingly unrelated formulations of the Jacobian conjecture. For example,

a) up to a polynomial coordinate change, $( \partial _ { 1 } , \dots , \partial _ { n } )$ is the only commutative $\mathbf{C} [ X ]$-basis of ;

b) every order-preserving $\mathbf{C}$-endomorphism of the $n$th Weyl algebra $A _ { n }$ is an isomorphism (A. van den Essen).

c) for every $d , n \geq 1$ there exists a constant $C ( n , d ) > 0$ such that for every commutative $\mathbf{Q}$-algebra $R$ and every $F \in \operatorname { Aut } _ { R } R [ X ]$ with $\operatorname { det } J F = 1$ and $\operatorname { deg } F \leq d$, one has $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ (H. Bass).

d) if $F : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ is a polynomial mapping such that $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ for some $z \in \mathbf{C} ^ { n }$, then $F ( a ) = F ( b )$ for some $a \neq b \in {\bf C} ^ { n }$.

e) if, in the last formulation, one replaces $\mathbf{C}$ by $\mathbf{R}$ the so-called real Jacobian conjecture is obtained, i.e. if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a polynomial mapping such that $\operatorname { det } J F ( x ) \neq 0$ for all $x \in \mathbf{R} ^ { n }$, then $F$ is injective. It was shown in 1994 (S. Pinchuk) that this conjecture is false for $n \geq 2$. Another conjecture, formulated by L. Markus and H. Yamabe in 1960 is the global asymptotic stability Jacobian conjecture, also called the Markus–Yamabe conjecture. It asserts that if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a $C ^ { 1 }$-mapping with $F ( 0 ) = 0$ and such that for all $x \in \mathbf{R} ^ { n }$ the real parts of all eigenvalues of $J F ( x )$ are $< 0$, then each solution of $\dot { y } ( t ) = F ( y ( t ) )$ tends to zero if $t$ tends to infinity. The Markus–Yamabe conjecture (for all $n$) implies the Jacobian conjecture. For $n = 2$ the Markus–Yamabe conjecture was proved to be true (R. Fessler, C. Gutierrez). However, in 1995 polynomial counterexamples where found for all $n \geq 3$ (A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Mañosas).

References

[a1] A. van den Essen, "Polynomial automorphisms and the Jacobian conjecture" J. Alev (ed.) et al. (ed.) , Algèbre Noncommutative, Groupes Quantiques et Invariants , SMF (1985) pp. 55–81
[a2] A. van den Essen, "Seven lectures on polynomial automorphisms" A. van den Essen (ed.) , Automorphisms of Affine Spaces , Kluwer Acad. Publ. (1995) pp. 3–39
[a3] H. Bass, E.H. Connell, D. Wright, "The Jacobian conjecture: reduction of degree and formal expansion of the inverse" Bull. Amer. Math. Soc. , 7 (1982) pp. 287–330
[a4] O.H. Keller, "Ganze Cremonatransformationen" Monatschr. Math. Phys. , 47 (1939) pp. 229–306
[a5] A. van den Essen, "Polynomial automorphisms and the Jacobian conjecture" , Birkhäuser (to appear in 2000)
How to Cite This Entry:
Jacobian conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobian_conjecture&oldid=19054
This article was adapted from an original article by A. van den Essen (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article