Namespaces
Variants
Actions

Jackson singular integral

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Jackson operator

An integral of the form

$$ U _ {n} ( f , x ) = \frac{1} \pi \int\limits _ {- \pi } ^ { {+ } \pi } f ( x + u ) K _ {n} ( u) du , $$

in which the expression

$$ K _ {n} ( u) = \frac{3}{2n ( 2n ^ {2} + 1 ) } \left ( \frac{\sin ( {n u } / 2) }{\sin ( {u } / 2) } \right ) ^ {4} ,\ n = 1 , 2 \dots $$

is known as a Jackson kernel. It was first employed by D. Jackson [1] in his estimate of the best approximation of a function $ f $ in the modulus of continuity $ \omega ( f , 1 / n ) $ or in the modulus of continuity of its derivative of order $ k \geq 1 $. Jackson's singular integral is a positive operator and is a trigonometric polynomial of order $ 2n - 2 $; its kernel $ K _ {n} ( u) $ can be represented in the form

$$ K _ {n} ( u) = A + \rho _ {1} ^ {2n - 2 } \cos t + \dots + \rho _ {2n - 2 } ^ {2n - 2 } \cos ( 2n - 2 ) t , $$

where $ A = 1 / 2 $ and $ \rho _ {1} ^ {2n - 2 } = 1 - 3 / ( 2n ^ {2} ) $, $ n = 1 , 2 , . . . $. The estimate

$$ | U _ {n} ( f , x ) - f( x) | \leq 6 \omega \left ( f , \frac{1}{n} \right ) $$

is valid.

References

[1] D. Jackson, "The theory of approximation" , Amer. Math. Soc. (1930)
[2] I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian)
How to Cite This Entry:
Jackson singular integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jackson_singular_integral&oldid=47453
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article