Namespaces
Variants
Actions

Involution algebra

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


algebra with involution

An algebra $ E $ over the field of complex numbers endowed with an involution $ x \mapsto x ^ {*} $, $ x \in E $. Some examples are: the algebra of continuous functions on a compact set, in which the involution sends any function to its complex conjugate; the algebra of bounded linear operators on a Hilbert space, in which the involution sends any operator to its adjoint; the group algebra of a locally compact group; and the algebra of measures on a locally compact group. The element $ x ^ {*} \in E $ is called the conjugate, or adjoint, of $ x $. An element $ x \in E $ is called self-adjoint, or Hermitian, if $ x ^ {*} = x $, and normal if $ x ^ {*} x = x x ^ {*} $. If $ E $ contains a unit element 1, then an element $ x \in E $ such that $ x ^ {*} x = x x ^ {*} = 1 $ is called unitary. The set $ E _ {h} $ of Hermitian elements of $ E $ is a real vector subspace of $ E $, and any $ x \in E $ can be uniquely written in the form $ x = x _ {1} + i x _ {2} $, where $ x _ {1} , x _ {2} \in E _ {h} $. In this case $ x \in E $ is normal if and only if $ x _ {1} $ and $ x _ {2} $ commute. Every element of the form $ x ^ {*} x $ is Hermitian, and so is the unit element. If $ x $ is invertible, then so is $ x ^ {*} $, and $ ( x ^ {*} ) ^ {-} 1 = ( x ^ {-} 1 ) ^ {*} $. The spectrum of any Hermitian element (cf. Spectrum of an element) is symmetric about the real axis. An involution algebra $ E $ is called a total involution algebra if the spectrum of any element of the form $ x ^ {*} x $, $ x \in E $, is contained in the set of non-negative real numbers. Examples of total involution algebras are: the involution algebra of continuous functions on a compact set; the involution algebra of bounded linear operators on a Hilbert space; and group algebras of compact and commutative locally compact groups. The group algebras of non-compact semi-simple Lie groups are not total involution algebras. A commutative involution algebra $ E $ is a total involution algebra if and only if all its maximal ideals are symmetric, or if and only if all characters of $ E $ are Hermitian. Every $ C ^ {*} $- algebra is a total involution algebra.

A subset $ M $ of an involution algebra $ E $ is called an involution set if $ x ^ {*} \in M $ for all $ x \in M $. A mapping $ \phi : E \rightarrow F $ of involution algebras is called an involution mapping if $ \phi ( x) ^ {*} = \phi ( x ^ {*} ) $ for all $ x \in E $. The kernel of an involution homomorphism of involution algebras is a symmetric two-sided ideal. Every symmetric one-sided ideal is two-sided and the quotient algebra of an involution algebra by a symmetric ideal admits the structure of an involution algebra in a natural way. The radical (cf. Radical of rings and algebras) of an involution algebra is a symmetric ideal. An involution subalgebra $ F $ of an involution algebra $ E $ is an involution algebra. Let $ \widetilde{E} $ be the direct sum of an involution algebra $ E $ and the field $ \mathbf C $, in which the linear operations and the involution are defined componentwise and the multiplication is given by

$$ \{ x , \lambda \} \{ y , \mu \} = \ \{ x y + \lambda y + \mu x , \lambda \mu \} $$

for all $ \lambda , \mu \in \mathbf C $, $ x , y \in E $. Then $ \widetilde{E} $ is an involution algebra with a unit element.

A linear functional $ f $ on an involution algebra is called Hermitian if $ f ( x ^ {*} ) = \overline{ {f ( x) }}\; $ for all $ x \in E $, and positive if $ f ( x ^ {*} x ) \geq 0 $ for all $ x \in E $. The set $ E _ {h} ^ \prime $ of Hermitian linear functionals on $ E $ is a real vector subspace of $ E ^ \prime $, the dual of $ E $, and $ E ^ \prime $ is the direct sum of the subspaces $ E _ {h} ^ \prime $ and $ i E _ {h} ^ \prime $. If $ E $ has a unit 1, then every positive functional $ f $ on $ E $ is Hermitian and $ | f ( x) | ^ {2} \leq f ( 1) f ( x ^ {*} x ) $ for all $ x \in E $. If $ f $ is a positive functional on an involution algebra $ E $, then $ f ( y ^ {*} x ) = f ( x ^ {*} y ) $ and $ | f ( y ^ {*} x ) | ^ {2} \leq f ( y ^ {*} y) f( x ^ {*} x ) $ for all $ x , y \in E $.

Let $ E $ be an involution algebra equipped with a norm making $ E $ into a normed algebra and satisfying the condition $ \| x ^ {*} \| = \| x \| $ for all $ x \in E $. Then $ E $ is called a normed algebra with involution. If $ E $ is complete with respect to this norm, then $ E $ is called a Banach algebra with involution. Every normed algebra with involution $ E $ can be imbedded in a Banach algebra with involution $ \overline{E}\; $ containing $ E $ as a dense involution subalgebra. $ \overline{E}\; $ is uniquely defined up to an isometric involution isomorphism. $ \overline{E}\; $ is called the completion of $ E $. If $ E $ is a Banach algebra with involution having an approximate identity, then every positive linear functional $ f $ on $ E $ is continuous and can be extended to a positive linear functional on $ \overline{E}\; $. If $ E $ has a unit 1 and $ \| 1 \| = 1 $, then for any positive linear functional $ f $ on $ E $, $ \| f \| = f ( 1) $ and $ f ( x ^ {*} x ) \leq f ( 1) r ( x ^ {*} x ) $, where $ r ( x ^ {*} x ) $ is the spectral radius of $ x ^ {*} x $( see Banach algebra).

A Hermitian element of a total involution algebra has a real spectrum. For any maximal closed left ideal $ I $ in a total involution algebra $ E $ with a unit there is a positive linear functional on $ f $ on $ E $ such that $ I = \{ {x \in E } : {f ( x ^ {*} x ) = 0 } \} $. An element $ x $ in a total involution algebra $ E $ is left-invertible in $ E $ if and only if $ f ( x ^ {*} x ) > 0 $ for all non-zero positive functionals $ f $ on $ E $. The radical of a total involution algebra $ E $ coincides with the set of elements $ x \in E $ such that $ f ( x ^ {*} x ) = 0 $ for all positive linear functionals $ f $ on $ E $. A Banach algebra with involution $ E $ with a unit 1 is a total involution algebra if and only if $ r ( x ^ {*} x ) = \sup f ( x ^ {*} x ) $, where the supremum is taken over the set of positive linear functionals $ f $ on $ E $ for which $ f ( 1) = 1 $.

References

[1] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)
[2] J. Dixmier, " algebras" , North-Holland (1977) (Translated from French)
[3] V. Pták, "Banach algebras with involution" Manuscripta Math. , 6 : 3 (1972) pp. 245–290
[4] E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 2 , Springer (1979)

Comments

A (Banach, normed) algebra with involution is also called an involutive (Banach, normed) algebra. If in an involutive Banach algebra $ A $ one has $ \| x x ^ {*} \| = \| x \| ^ {2} $ for all $ x \in A $, then $ A $ is called a $ B ^ {*} $- algebra.

Let $ A $ be a Banach algebra. A left-approximate identity in $ A $ is a net $ \{ e _ {i} \} _ {i \in I } $ of elements of $ A $( cf. Net (directed set)) such that $ \lim\limits \| e _ {i} x - x \| = 0 $ for all $ x \in A $. A right-approximate identity is similarly defined, using $ \| x e _ {i} - x \| $. A left- and right-approximate identity is simply called an approximate identity. Every $ B ^ {*} $- algebra has an approximate identity.

An algebra with involution $ E $ is also termed a symmetric algebra, and a total involution algebra is also called a completely symmetric algebra. Correspondingly, a homomorphism of algebras with involution $ \phi : E \rightarrow F $ is called a symmetric homomorphism if $ \phi ( x ^ {*} ) = \phi ( x ) ^ {*} $ for all $ x \in E $. Unfortunately, the term symmetric algebra is also sometimes used to mean a total involution algebra.

A symmetric ideal of $ E $ is an ideal $ M $ such that $ M ^ {*} = \{ {m ^ {*} } : {m \in M } \} = M $.

References

[a1] W. Rudin, "Functional analysis" , McGraw-Hill (1979)
How to Cite This Entry:
Involution algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Involution_algebra&oldid=47429
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article