Namespaces
Variants
Actions

Difference between revisions of "Involution algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0525201.png
 +
$#A+1 = 134 n = 1
 +
$#C+1 = 134 : ~/encyclopedia/old_files/data/I052/I.0502520 Involution algebra,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''algebra with involution''
 
''algebra with involution''
  
An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525201.png" /> over the field of complex numbers endowed with an [[Involution|involution]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525203.png" />. Some examples are: the algebra of continuous functions on a compact set, in which the involution sends any function to its complex conjugate; the algebra of bounded linear operators on a Hilbert space, in which the involution sends any operator to its adjoint; the [[Group algebra of a locally compact group|group algebra of a locally compact group]]; and the algebra of measures on a locally compact group. The element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525204.png" /> is called the conjugate, or adjoint, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525205.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525206.png" /> is called self-adjoint, or Hermitian, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525207.png" />, and normal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525208.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i0525209.png" /> contains a unit element 1, then an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252011.png" /> is called unitary. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252012.png" /> of Hermitian elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252013.png" /> is a real vector subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252014.png" />, and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252015.png" /> can be uniquely written in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252017.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252018.png" /> is normal if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252020.png" /> commute. Every element of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252021.png" /> is Hermitian, and so is the unit element. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252022.png" /> is invertible, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252024.png" />. The spectrum of any Hermitian element (cf. [[Spectrum of an element|Spectrum of an element]]) is symmetric about the real axis. An involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252025.png" /> is called a total involution algebra if the spectrum of any element of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252027.png" />, is contained in the set of non-negative real numbers. Examples of total involution algebras are: the involution algebra of continuous functions on a compact set; the involution algebra of bounded linear operators on a Hilbert space; and group algebras of compact and commutative locally compact groups. The group algebras of non-compact semi-simple Lie groups are not total involution algebras. A commutative involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252028.png" /> is a total involution algebra if and only if all its maximal ideals are symmetric, or if and only if all characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252029.png" /> are Hermitian. Every [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252030.png" />-algebra]] is a total involution algebra.
+
An algebra $  E $
 +
over the field of complex numbers endowed with an [[Involution|involution]] $  x \mapsto x  ^ {*} $,  
 +
$  x \in E $.  
 +
Some examples are: the algebra of continuous functions on a compact set, in which the involution sends any function to its complex conjugate; the algebra of bounded linear operators on a Hilbert space, in which the involution sends any operator to its adjoint; the [[Group algebra of a locally compact group|group algebra of a locally compact group]]; and the algebra of measures on a locally compact group. The element $  x  ^ {*} \in E $
 +
is called the conjugate, or adjoint, of $  x $.  
 +
An element $  x \in E $
 +
is called self-adjoint, or Hermitian, if $  x  ^ {*} = x $,  
 +
and normal if $  x  ^ {*} x = x x  ^ {*} $.  
 +
If $  E $
 +
contains a unit element 1, then an element $  x \in E $
 +
such that $  x  ^ {*} x = x x  ^ {*} = 1 $
 +
is called unitary. The set $  E _ {h} $
 +
of Hermitian elements of $  E $
 +
is a real vector subspace of $  E $,  
 +
and any $  x \in E $
 +
can be uniquely written in the form $  x = x _ {1} + i x _ {2} $,  
 +
where $  x _ {1} , x _ {2} \in E _ {h} $.  
 +
In this case $  x \in E $
 +
is normal if and only if $  x _ {1} $
 +
and $  x _ {2} $
 +
commute. Every element of the form $  x  ^ {*} x $
 +
is Hermitian, and so is the unit element. If $  x $
 +
is invertible, then so is $  x  ^ {*} $,  
 +
and $  ( x  ^ {*} )  ^ {-} 1 = ( x  ^ {-} 1 )  ^ {*} $.  
 +
The spectrum of any Hermitian element (cf. [[Spectrum of an element|Spectrum of an element]]) is symmetric about the real axis. An involution algebra $  E $
 +
is called a total involution algebra if the spectrum of any element of the form $  x  ^ {*} x $,  
 +
$  x \in E $,  
 +
is contained in the set of non-negative real numbers. Examples of total involution algebras are: the involution algebra of continuous functions on a compact set; the involution algebra of bounded linear operators on a Hilbert space; and group algebras of compact and commutative locally compact groups. The group algebras of non-compact semi-simple Lie groups are not total involution algebras. A commutative involution algebra $  E $
 +
is a total involution algebra if and only if all its maximal ideals are symmetric, or if and only if all characters of $  E $
 +
are Hermitian. Every [[C*-algebra| $  C  ^ {*} $-
 +
algebra]] is a total involution algebra.
  
A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252031.png" /> of an involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252032.png" /> is called an involution set if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252033.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252034.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252035.png" /> of involution algebras is called an involution mapping if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252036.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252037.png" />. The kernel of an involution homomorphism of involution algebras is a symmetric two-sided ideal. Every symmetric one-sided ideal is two-sided and the quotient algebra of an involution algebra by a symmetric ideal admits the structure of an involution algebra in a natural way. The radical (cf. [[Radical of rings and algebras|Radical of rings and algebras]]) of an involution algebra is a symmetric ideal. An involution subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252038.png" /> of an involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252039.png" /> is an involution algebra. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252040.png" /> be the direct sum of an involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252041.png" /> and the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252042.png" />, in which the linear operations and the involution are defined componentwise and the multiplication is given by
+
A subset $  M $
 +
of an involution algebra $  E $
 +
is called an involution set if $  x  ^ {*} \in M $
 +
for all $  x \in M $.  
 +
A mapping $  \phi : E \rightarrow F $
 +
of involution algebras is called an involution mapping if $  \phi ( x)  ^ {*} = \phi ( x  ^ {*} ) $
 +
for all $  x \in E $.  
 +
The kernel of an involution homomorphism of involution algebras is a symmetric two-sided ideal. Every symmetric one-sided ideal is two-sided and the quotient algebra of an involution algebra by a symmetric ideal admits the structure of an involution algebra in a natural way. The radical (cf. [[Radical of rings and algebras|Radical of rings and algebras]]) of an involution algebra is a symmetric ideal. An involution subalgebra $  F $
 +
of an involution algebra $  E $
 +
is an involution algebra. Let $  \widetilde{E}  $
 +
be the direct sum of an involution algebra $  E $
 +
and the field $  \mathbf C $,  
 +
in which the linear operations and the involution are defined componentwise and the multiplication is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252043.png" /></td> </tr></table>
+
$$
 +
\{ x , \lambda \} \{ y , \mu \}  = \
 +
\{ x y + \lambda y + \mu x , \lambda \mu \}
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252045.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252046.png" /> is an involution algebra with a unit element.
+
for all $  \lambda , \mu \in \mathbf C $,
 +
$  x , y \in E $.  
 +
Then $  \widetilde{E}  $
 +
is an involution algebra with a unit element.
  
A linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252047.png" /> on an involution algebra is called Hermitian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252048.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252049.png" />, and positive if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252050.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252051.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252052.png" /> of Hermitian linear functionals on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252053.png" /> is a real vector subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252054.png" />, the dual of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252055.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252056.png" /> is the direct sum of the subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252058.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252059.png" /> has a unit 1, then every positive functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252060.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252061.png" /> is Hermitian and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252062.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252063.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252064.png" /> is a positive functional on an involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252065.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252066.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252067.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252068.png" />.
+
A linear functional $  f $
 +
on an involution algebra is called Hermitian if $  f ( x  ^ {*} ) = \overline{ {f ( x) }}\; $
 +
for all $  x \in E $,  
 +
and positive if $  f ( x  ^ {*} x ) \geq  0 $
 +
for all $  x \in E $.  
 +
The set $  E _ {h}  ^  \prime  $
 +
of Hermitian linear functionals on $  E $
 +
is a real vector subspace of $  E  ^  \prime  $,  
 +
the dual of $  E $,  
 +
and $  E  ^  \prime  $
 +
is the direct sum of the subspaces $  E _ {h}  ^  \prime  $
 +
and i E _ {h}  ^  \prime  $.  
 +
If $  E $
 +
has a unit 1, then every positive functional $  f $
 +
on $  E $
 +
is Hermitian and $  | f ( x) |  ^ {2} \leq  f ( 1) f ( x  ^ {*} x ) $
 +
for all $  x \in E $.  
 +
If $  f $
 +
is a positive functional on an involution algebra $  E $,  
 +
then $  f ( y  ^ {*} x ) = f ( x  ^ {*} y ) $
 +
and $  | f ( y  ^ {*} x ) |  ^ {2} \leq  f ( y  ^ {*} y) f( x  ^ {*} x ) $
 +
for all $  x , y \in E $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252069.png" /> be an involution algebra equipped with a norm making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252070.png" /> into a [[Normed algebra|normed algebra]] and satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252071.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252072.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252073.png" /> is called a normed algebra with involution. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252074.png" /> is complete with respect to this norm, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252075.png" /> is called a Banach algebra with involution. Every normed algebra with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252076.png" /> can be imbedded in a Banach algebra with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252077.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252078.png" /> as a dense involution subalgebra. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252079.png" /> is uniquely defined up to an isometric involution isomorphism. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252080.png" /> is called the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252081.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252082.png" /> is a Banach algebra with involution having an approximate identity, then every positive linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252083.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252084.png" /> is continuous and can be extended to a positive linear functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252085.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252086.png" /> has a unit 1 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252087.png" />, then for any positive linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252088.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252089.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252091.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252092.png" /> is the [[Spectral radius|spectral radius]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252093.png" /> (see [[Banach algebra|Banach algebra]]).
+
Let $  E $
 +
be an involution algebra equipped with a norm making $  E $
 +
into a [[Normed algebra|normed algebra]] and satisfying the condition $  \| x  ^ {*} \| = \| x \| $
 +
for all $  x \in E $.  
 +
Then $  E $
 +
is called a normed algebra with involution. If $  E $
 +
is complete with respect to this norm, then $  E $
 +
is called a Banach algebra with involution. Every normed algebra with involution $  E $
 +
can be imbedded in a Banach algebra with involution $  \overline{E}\; $
 +
containing $  E $
 +
as a dense involution subalgebra. $  \overline{E}\; $
 +
is uniquely defined up to an isometric involution isomorphism. $  \overline{E}\; $
 +
is called the completion of $  E $.  
 +
If $  E $
 +
is a Banach algebra with involution having an approximate identity, then every positive linear functional $  f $
 +
on $  E $
 +
is continuous and can be extended to a positive linear functional on $  \overline{E}\; $.  
 +
If $  E $
 +
has a unit 1 and $  \| 1 \| = 1 $,  
 +
then for any positive linear functional $  f $
 +
on $  E $,  
 +
$  \| f \| = f ( 1) $
 +
and $  f ( x  ^ {*} x ) \leq  f ( 1) r ( x  ^ {*} x ) $,  
 +
where $  r ( x  ^ {*} x ) $
 +
is the [[Spectral radius|spectral radius]] of $  x  ^ {*} x $(
 +
see [[Banach algebra|Banach algebra]]).
  
A Hermitian element of a total involution algebra has a real spectrum. For any maximal closed left ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252094.png" /> in a total involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252095.png" /> with a unit there is a positive linear functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252096.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252097.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252098.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252099.png" /> in a total involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520100.png" /> is left-invertible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520101.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520102.png" /> for all non-zero positive functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520103.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520104.png" />. The radical of a total involution algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520105.png" /> coincides with the set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520106.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520107.png" /> for all positive linear functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520108.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520109.png" />. A Banach algebra with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520110.png" /> with a unit 1 is a total involution algebra if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520111.png" />, where the supremum is taken over the set of positive linear functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520112.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520113.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520114.png" />.
+
A Hermitian element of a total involution algebra has a real spectrum. For any maximal closed left ideal $  I $
 +
in a total involution algebra $  E $
 +
with a unit there is a positive linear functional on $  f $
 +
on $  E $
 +
such that $  I = \{ {x \in E } : {f ( x  ^ {*} x ) = 0 } \} $.  
 +
An element $  x $
 +
in a total involution algebra $  E $
 +
is left-invertible in $  E $
 +
if and only if $  f ( x  ^ {*} x ) > 0 $
 +
for all non-zero positive functionals $  f $
 +
on $  E $.  
 +
The radical of a total involution algebra $  E $
 +
coincides with the set of elements $  x \in E $
 +
such that $  f ( x  ^ {*} x ) = 0 $
 +
for all positive linear functionals $  f $
 +
on $  E $.  
 +
A Banach algebra with involution $  E $
 +
with a unit 1 is a total involution algebra if and only if $  r ( x  ^ {*} x ) = \sup  f ( x  ^ {*} x ) $,  
 +
where the supremum is taken over the set of positive linear functionals $  f $
 +
on $  E $
 +
for which $  f ( 1) = 1 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520115.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V. Pták,  "Banach algebras with involution"  ''Manuscripta Math.'' , '''6''' :  3  (1972)  pp. 245–290</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''2''' , Springer  (1979)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520115.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V. Pták,  "Banach algebras with involution"  ''Manuscripta Math.'' , '''6''' :  3  (1972)  pp. 245–290</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''2''' , Springer  (1979)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A (Banach, normed) algebra with involution is also called an involutive (Banach, normed) algebra. If in an involutive Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520116.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520117.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520118.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520119.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520121.png" />-algebra.
+
A (Banach, normed) algebra with involution is also called an involutive (Banach, normed) algebra. If in an involutive Banach algebra $  A $
 +
one has $  \| x x  ^ {*} \| = \| x \|  ^ {2} $
 +
for all $  x \in A $,  
 +
then $  A $
 +
is called a $  B  ^ {*} $-
 +
algebra.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520122.png" /> be a Banach algebra. A left-approximate identity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520123.png" /> is a net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520124.png" /> of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520125.png" /> (cf. [[Net (directed set)|Net (directed set)]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520126.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520127.png" />. A right-approximate identity is similarly defined, using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520128.png" />. A left- and right-approximate identity is simply called an approximate identity. Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520129.png" />-algebra has an approximate identity.
+
Let $  A $
 +
be a Banach algebra. A left-approximate identity in $  A $
 +
is a net $  \{ e _ {i} \} _ {i \in I }  $
 +
of elements of $  A $(
 +
cf. [[Net (directed set)|Net (directed set)]]) such that $  \lim\limits  \| e _ {i} x - x \| = 0 $
 +
for all $  x \in A $.  
 +
A right-approximate identity is similarly defined, using $  \| x e _ {i} - x \| $.  
 +
A left- and right-approximate identity is simply called an approximate identity. Every $  B  ^ {*} $-
 +
algebra has an approximate identity.
  
An algebra with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520130.png" /> is also termed a symmetric algebra, and a total involution algebra is also called a completely symmetric algebra. Correspondingly, a homomorphism of algebras with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520131.png" /> is called a symmetric homomorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520132.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520133.png" />. Unfortunately, the term symmetric algebra is also sometimes used to mean a total involution algebra.
+
An algebra with involution $  E $
 +
is also termed a symmetric algebra, and a total involution algebra is also called a completely symmetric algebra. Correspondingly, a homomorphism of algebras with involution $  \phi : E \rightarrow F $
 +
is called a symmetric homomorphism if $  \phi ( x  ^ {*} ) = \phi ( x )  ^ {*} $
 +
for all $  x \in E $.  
 +
Unfortunately, the term symmetric algebra is also sometimes used to mean a total involution algebra.
  
A symmetric ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520134.png" /> is an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520135.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i052520136.png" />.
+
A symmetric ideal of $  E $
 +
is an ideal $  M $
 +
such that $  M  ^ {*} = \{ {m  ^ {*} } : {m \in M } \} = M $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Functional analysis" , McGraw-Hill  (1979)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Functional analysis" , McGraw-Hill  (1979)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


algebra with involution

An algebra $ E $ over the field of complex numbers endowed with an involution $ x \mapsto x ^ {*} $, $ x \in E $. Some examples are: the algebra of continuous functions on a compact set, in which the involution sends any function to its complex conjugate; the algebra of bounded linear operators on a Hilbert space, in which the involution sends any operator to its adjoint; the group algebra of a locally compact group; and the algebra of measures on a locally compact group. The element $ x ^ {*} \in E $ is called the conjugate, or adjoint, of $ x $. An element $ x \in E $ is called self-adjoint, or Hermitian, if $ x ^ {*} = x $, and normal if $ x ^ {*} x = x x ^ {*} $. If $ E $ contains a unit element 1, then an element $ x \in E $ such that $ x ^ {*} x = x x ^ {*} = 1 $ is called unitary. The set $ E _ {h} $ of Hermitian elements of $ E $ is a real vector subspace of $ E $, and any $ x \in E $ can be uniquely written in the form $ x = x _ {1} + i x _ {2} $, where $ x _ {1} , x _ {2} \in E _ {h} $. In this case $ x \in E $ is normal if and only if $ x _ {1} $ and $ x _ {2} $ commute. Every element of the form $ x ^ {*} x $ is Hermitian, and so is the unit element. If $ x $ is invertible, then so is $ x ^ {*} $, and $ ( x ^ {*} ) ^ {-} 1 = ( x ^ {-} 1 ) ^ {*} $. The spectrum of any Hermitian element (cf. Spectrum of an element) is symmetric about the real axis. An involution algebra $ E $ is called a total involution algebra if the spectrum of any element of the form $ x ^ {*} x $, $ x \in E $, is contained in the set of non-negative real numbers. Examples of total involution algebras are: the involution algebra of continuous functions on a compact set; the involution algebra of bounded linear operators on a Hilbert space; and group algebras of compact and commutative locally compact groups. The group algebras of non-compact semi-simple Lie groups are not total involution algebras. A commutative involution algebra $ E $ is a total involution algebra if and only if all its maximal ideals are symmetric, or if and only if all characters of $ E $ are Hermitian. Every $ C ^ {*} $- algebra is a total involution algebra.

A subset $ M $ of an involution algebra $ E $ is called an involution set if $ x ^ {*} \in M $ for all $ x \in M $. A mapping $ \phi : E \rightarrow F $ of involution algebras is called an involution mapping if $ \phi ( x) ^ {*} = \phi ( x ^ {*} ) $ for all $ x \in E $. The kernel of an involution homomorphism of involution algebras is a symmetric two-sided ideal. Every symmetric one-sided ideal is two-sided and the quotient algebra of an involution algebra by a symmetric ideal admits the structure of an involution algebra in a natural way. The radical (cf. Radical of rings and algebras) of an involution algebra is a symmetric ideal. An involution subalgebra $ F $ of an involution algebra $ E $ is an involution algebra. Let $ \widetilde{E} $ be the direct sum of an involution algebra $ E $ and the field $ \mathbf C $, in which the linear operations and the involution are defined componentwise and the multiplication is given by

$$ \{ x , \lambda \} \{ y , \mu \} = \ \{ x y + \lambda y + \mu x , \lambda \mu \} $$

for all $ \lambda , \mu \in \mathbf C $, $ x , y \in E $. Then $ \widetilde{E} $ is an involution algebra with a unit element.

A linear functional $ f $ on an involution algebra is called Hermitian if $ f ( x ^ {*} ) = \overline{ {f ( x) }}\; $ for all $ x \in E $, and positive if $ f ( x ^ {*} x ) \geq 0 $ for all $ x \in E $. The set $ E _ {h} ^ \prime $ of Hermitian linear functionals on $ E $ is a real vector subspace of $ E ^ \prime $, the dual of $ E $, and $ E ^ \prime $ is the direct sum of the subspaces $ E _ {h} ^ \prime $ and $ i E _ {h} ^ \prime $. If $ E $ has a unit 1, then every positive functional $ f $ on $ E $ is Hermitian and $ | f ( x) | ^ {2} \leq f ( 1) f ( x ^ {*} x ) $ for all $ x \in E $. If $ f $ is a positive functional on an involution algebra $ E $, then $ f ( y ^ {*} x ) = f ( x ^ {*} y ) $ and $ | f ( y ^ {*} x ) | ^ {2} \leq f ( y ^ {*} y) f( x ^ {*} x ) $ for all $ x , y \in E $.

Let $ E $ be an involution algebra equipped with a norm making $ E $ into a normed algebra and satisfying the condition $ \| x ^ {*} \| = \| x \| $ for all $ x \in E $. Then $ E $ is called a normed algebra with involution. If $ E $ is complete with respect to this norm, then $ E $ is called a Banach algebra with involution. Every normed algebra with involution $ E $ can be imbedded in a Banach algebra with involution $ \overline{E}\; $ containing $ E $ as a dense involution subalgebra. $ \overline{E}\; $ is uniquely defined up to an isometric involution isomorphism. $ \overline{E}\; $ is called the completion of $ E $. If $ E $ is a Banach algebra with involution having an approximate identity, then every positive linear functional $ f $ on $ E $ is continuous and can be extended to a positive linear functional on $ \overline{E}\; $. If $ E $ has a unit 1 and $ \| 1 \| = 1 $, then for any positive linear functional $ f $ on $ E $, $ \| f \| = f ( 1) $ and $ f ( x ^ {*} x ) \leq f ( 1) r ( x ^ {*} x ) $, where $ r ( x ^ {*} x ) $ is the spectral radius of $ x ^ {*} x $( see Banach algebra).

A Hermitian element of a total involution algebra has a real spectrum. For any maximal closed left ideal $ I $ in a total involution algebra $ E $ with a unit there is a positive linear functional on $ f $ on $ E $ such that $ I = \{ {x \in E } : {f ( x ^ {*} x ) = 0 } \} $. An element $ x $ in a total involution algebra $ E $ is left-invertible in $ E $ if and only if $ f ( x ^ {*} x ) > 0 $ for all non-zero positive functionals $ f $ on $ E $. The radical of a total involution algebra $ E $ coincides with the set of elements $ x \in E $ such that $ f ( x ^ {*} x ) = 0 $ for all positive linear functionals $ f $ on $ E $. A Banach algebra with involution $ E $ with a unit 1 is a total involution algebra if and only if $ r ( x ^ {*} x ) = \sup f ( x ^ {*} x ) $, where the supremum is taken over the set of positive linear functionals $ f $ on $ E $ for which $ f ( 1) = 1 $.

References

[1] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)
[2] J. Dixmier, " algebras" , North-Holland (1977) (Translated from French)
[3] V. Pták, "Banach algebras with involution" Manuscripta Math. , 6 : 3 (1972) pp. 245–290
[4] E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 2 , Springer (1979)

Comments

A (Banach, normed) algebra with involution is also called an involutive (Banach, normed) algebra. If in an involutive Banach algebra $ A $ one has $ \| x x ^ {*} \| = \| x \| ^ {2} $ for all $ x \in A $, then $ A $ is called a $ B ^ {*} $- algebra.

Let $ A $ be a Banach algebra. A left-approximate identity in $ A $ is a net $ \{ e _ {i} \} _ {i \in I } $ of elements of $ A $( cf. Net (directed set)) such that $ \lim\limits \| e _ {i} x - x \| = 0 $ for all $ x \in A $. A right-approximate identity is similarly defined, using $ \| x e _ {i} - x \| $. A left- and right-approximate identity is simply called an approximate identity. Every $ B ^ {*} $- algebra has an approximate identity.

An algebra with involution $ E $ is also termed a symmetric algebra, and a total involution algebra is also called a completely symmetric algebra. Correspondingly, a homomorphism of algebras with involution $ \phi : E \rightarrow F $ is called a symmetric homomorphism if $ \phi ( x ^ {*} ) = \phi ( x ) ^ {*} $ for all $ x \in E $. Unfortunately, the term symmetric algebra is also sometimes used to mean a total involution algebra.

A symmetric ideal of $ E $ is an ideal $ M $ such that $ M ^ {*} = \{ {m ^ {*} } : {m \in M } \} = M $.

References

[a1] W. Rudin, "Functional analysis" , McGraw-Hill (1979)
How to Cite This Entry:
Involution algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Involution_algebra&oldid=18429
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article