Namespaces
Variants
Actions

Difference between revisions of "Invariant imbedding"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0522301.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/I052/I.0502230 Invariant imbedding
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method of converting certain two-point boundary value problems to initial value problems. It is an outgrowth of the method of invariance, introduced by V.A. Ambarzumyan (V.A. Ambartsumyan) (cf. [[#References|[a1]]]) and used so successfully by S. Chandrasekhar in radiative transfer problems (cf. [[#References|[a2]]]). Invariant imbedding is closely related to the sweep method (cf. also [[Double-sweep method|Double-sweep method]]; [[Shooting method|Shooting method]]).
 
A method of converting certain two-point boundary value problems to initial value problems. It is an outgrowth of the method of invariance, introduced by V.A. Ambarzumyan (V.A. Ambartsumyan) (cf. [[#References|[a1]]]) and used so successfully by S. Chandrasekhar in radiative transfer problems (cf. [[#References|[a2]]]). Invariant imbedding is closely related to the sweep method (cf. also [[Double-sweep method|Double-sweep method]]; [[Shooting method|Shooting method]]).
  
 
Consider the system of linear ordinary scalar differential equations
 
Consider the system of linear ordinary scalar differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522301.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
$$ \tag{a1 }
 +
 
 +
\frac{du}{dz}
 +
  = A ( z) u + B ( z) v ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522302.png" /></td> </tr></table>
+
$$
 +
-  
 +
\frac{dv}{dz}
 +
  = C ( z) u + D ( z) v ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522303.png" /></td> </tr></table>
+
$$
 +
x  \leq  z  \leq  y,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522304.png" /></td> </tr></table>
+
$$
 +
u ( x)  = 0,\  v ( y)  = 1.
 +
$$
  
(When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522306.png" /> are non-negative, (a1) may be considered as describing a flow of right-moving particles, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522307.png" />, and left-moving particles, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522308.png" />, with unit input at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522309.png" /> and no input at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223010.png" />. This interpretation is often helpful but is by no means necessary.) One asks for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223011.png" />. (In the flow model, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223012.png" /> is a reflection coefficient.)
+
(When $  B $
 +
and $  C $
 +
are non-negative, (a1) may be considered as describing a flow of right-moving particles, $  u $,  
 +
and left-moving particles, $  v $,  
 +
with unit input at $  y $
 +
and no input at $  x $.  
 +
This interpretation is often helpful but is by no means necessary.) One asks for $  R _ {r} ( x, y) \equiv u ( y) $.  
 +
(In the flow model, $  R _ {r} $
 +
is a reflection coefficient.)
  
 
Write
 
Write
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
$$ \tag{a2 }
 +
u ( z)  = R _ {r} ( x, z) v ( z).
 +
$$
  
 
Substitution of (a2) into (a1) yields, formally,
 
Substitution of (a2) into (a1) yields, formally,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a3 }
 +
 
 +
\frac{dR _ {r} }{dz}
 +
  = \
 +
B + ( A + D) R _ {r} + CR _ {r}  ^ {2} ,\ \
 +
R _ {r} ( x, x)  = 0.
 +
$$
 +
 
 +
This [[Riccati equation|Riccati equation]] may, under certain conditions, be integrated from  $  x $
 +
to  $  y $
 +
to yield  $  u ( y) $.  
 +
If one defines  $  T _ {r} ( x, y) \equiv v ( x) $,
 +
then
 +
 
 +
$$ \tag{a4 }
  
This [[Riccati equation|Riccati equation]] may, under certain conditions, be integrated from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223015.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223016.png" /> to yield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223017.png" />. If one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223018.png" />, then
+
\frac{d}{dz}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
T _ {r} ( x, z)  = \
 +
[ D + CR _ {r} ( x, z)]
 +
T _ {r} ( x, z),\ \
 +
T _ {r} ( y, y)  = 1.
 +
$$
  
If the boundary conditions in (a1) are simply switched, analogous functions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223021.png" />, can be defined. Like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223022.png" />, they satisfy linear initial value equations. Only (a3) is non-linear (cf. [[#References|[a3]]]).
+
If the boundary conditions in (a1) are simply switched, analogous functions, $  R _ {l} $
 +
and $  T _ {l} $,  
 +
can be defined. Like $  T _ {r} $,  
 +
they satisfy linear initial value equations. Only (a3) is non-linear (cf. [[#References|[a3]]]).
  
 
The approach becomes much more valuable when the boundary conditions in (a1) are replaced by
 
The approach becomes much more valuable when the boundary conditions in (a1) are replaced by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
$$ \tag{a5 }
 +
u ( x)  = s _ {l} ,\ \
 +
v ( y)  = s _ {r} .
 +
$$
  
Then, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223025.png" />,
+
Then, for any $  z  ^ {*} $,  
 +
$  x \leq  z  ^ {*} \leq  y $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
$$ \tag{a6 }
 +
u ( z  ^ {*} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223027.png" /></td> </tr></table>
+
$$
 +
= \
 +
\rho ( x, y, z  ^ {*} ) [ s _ {r} T _ {r} ( z  ^ {*} , y)
 +
R _ {r} ( x, z  ^ {*} ) + s _ {l} T _ {l} ( x, z  ^ {*} )],
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223028.png" /></td> </tr></table>
+
$$
 +
v ( z  ^ {*} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223029.png" /></td> </tr></table>
+
$$
 +
= \
 +
\rho ( x, y, z  ^ {*} ) [ s _ {l} T _ {l} ( x, z  ^ {*} )
 +
R _ {l} ( z  ^ {*} , y) + s _ {r} T _ {r} ( z  ^ {*} , y)],
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223030.png" /></td> </tr></table>
+
$$
 +
\rho ( x, y, z  ^ {*} )  = [ 1 - R _ {r} ( x,\
 +
z  ^ {*} ) R _ {l} ( z  ^ {*} , y)]  ^ {-} 1 .
 +
$$
  
 
There are many extensions and generalizations of these ideas. A few are:
 
There are many extensions and generalizations of these ideas. A few are:
  
a) Equation (a1) may be replaced by a system with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223031.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223032.png" />-vector and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223033.png" /> a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223034.png" />-vector.
+
a) Equation (a1) may be replaced by a system with $  u $
 +
an $  n $-
 +
vector and $  v $
 +
a $  k $-
 +
vector.
  
 
b) Inhomogeneous terms may be appended to (a1).
 
b) Inhomogeneous terms may be appended to (a1).
Line 51: Line 129:
 
c) Conditions (a5) may be replaced by mixed boundary conditions.
 
c) Conditions (a5) may be replaced by mixed boundary conditions.
  
d) If (a3) fails to have a solution for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223036.png" />, various devices may be employed to cross the singularity.
+
d) If (a3) fails to have a solution for all $  z $,  
 +
$  x \leq  z \leq  y $,  
 +
various devices may be employed to cross the singularity.
  
In all cases the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223037.png" /> plays the crucial role and is the only function obtained by solving a non-linear equation. All other problems are linear. (Note: the theory may also be built around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i05223038.png" />, which then satisfies a Riccati equation.)
+
In all cases the function $  R _ {r} $
 +
plays the crucial role and is the only function obtained by solving a non-linear equation. All other problems are linear. (Note: the theory may also be built around $  R _ {l} $,  
 +
which then satisfies a Riccati equation.)
  
 
Invariant imbedding concepts have been employed to investigate problems in transport theory (cf. also [[Transport equations, numerical methods|Transport equations, numerical methods]]), wave propagation, difference equations, integral equations, quantum mechanics, and many other areas of mathematics and theoretical physics.
 
Invariant imbedding concepts have been employed to investigate problems in transport theory (cf. also [[Transport equations, numerical methods|Transport equations, numerical methods]]), wave propagation, difference equations, integral equations, quantum mechanics, and many other areas of mathematics and theoretical physics.

Latest revision as of 22:13, 5 June 2020


A method of converting certain two-point boundary value problems to initial value problems. It is an outgrowth of the method of invariance, introduced by V.A. Ambarzumyan (V.A. Ambartsumyan) (cf. [a1]) and used so successfully by S. Chandrasekhar in radiative transfer problems (cf. [a2]). Invariant imbedding is closely related to the sweep method (cf. also Double-sweep method; Shooting method).

Consider the system of linear ordinary scalar differential equations

$$ \tag{a1 } \frac{du}{dz} = A ( z) u + B ( z) v , $$

$$ - \frac{dv}{dz} = C ( z) u + D ( z) v , $$

$$ x \leq z \leq y, $$

$$ u ( x) = 0,\ v ( y) = 1. $$

(When $ B $ and $ C $ are non-negative, (a1) may be considered as describing a flow of right-moving particles, $ u $, and left-moving particles, $ v $, with unit input at $ y $ and no input at $ x $. This interpretation is often helpful but is by no means necessary.) One asks for $ R _ {r} ( x, y) \equiv u ( y) $. (In the flow model, $ R _ {r} $ is a reflection coefficient.)

Write

$$ \tag{a2 } u ( z) = R _ {r} ( x, z) v ( z). $$

Substitution of (a2) into (a1) yields, formally,

$$ \tag{a3 } \frac{dR _ {r} }{dz} = \ B + ( A + D) R _ {r} + CR _ {r} ^ {2} ,\ \ R _ {r} ( x, x) = 0. $$

This Riccati equation may, under certain conditions, be integrated from $ x $ to $ y $ to yield $ u ( y) $. If one defines $ T _ {r} ( x, y) \equiv v ( x) $, then

$$ \tag{a4 } \frac{d}{dz} T _ {r} ( x, z) = \ [ D + CR _ {r} ( x, z)] T _ {r} ( x, z),\ \ T _ {r} ( y, y) = 1. $$

If the boundary conditions in (a1) are simply switched, analogous functions, $ R _ {l} $ and $ T _ {l} $, can be defined. Like $ T _ {r} $, they satisfy linear initial value equations. Only (a3) is non-linear (cf. [a3]).

The approach becomes much more valuable when the boundary conditions in (a1) are replaced by

$$ \tag{a5 } u ( x) = s _ {l} ,\ \ v ( y) = s _ {r} . $$

Then, for any $ z ^ {*} $, $ x \leq z ^ {*} \leq y $,

$$ \tag{a6 } u ( z ^ {*} ) = $$

$$ = \ \rho ( x, y, z ^ {*} ) [ s _ {r} T _ {r} ( z ^ {*} , y) R _ {r} ( x, z ^ {*} ) + s _ {l} T _ {l} ( x, z ^ {*} )], $$

$$ v ( z ^ {*} ) = $$

$$ = \ \rho ( x, y, z ^ {*} ) [ s _ {l} T _ {l} ( x, z ^ {*} ) R _ {l} ( z ^ {*} , y) + s _ {r} T _ {r} ( z ^ {*} , y)], $$

$$ \rho ( x, y, z ^ {*} ) = [ 1 - R _ {r} ( x,\ z ^ {*} ) R _ {l} ( z ^ {*} , y)] ^ {-} 1 . $$

There are many extensions and generalizations of these ideas. A few are:

a) Equation (a1) may be replaced by a system with $ u $ an $ n $- vector and $ v $ a $ k $- vector.

b) Inhomogeneous terms may be appended to (a1).

c) Conditions (a5) may be replaced by mixed boundary conditions.

d) If (a3) fails to have a solution for all $ z $, $ x \leq z \leq y $, various devices may be employed to cross the singularity.

In all cases the function $ R _ {r} $ plays the crucial role and is the only function obtained by solving a non-linear equation. All other problems are linear. (Note: the theory may also be built around $ R _ {l} $, which then satisfies a Riccati equation.)

Invariant imbedding concepts have been employed to investigate problems in transport theory (cf. also Transport equations, numerical methods), wave propagation, difference equations, integral equations, quantum mechanics, and many other areas of mathematics and theoretical physics.

References

[a1] V.A. Ambarzumyan, "Diffuse reflection of light by a foggy medium" C.R. Acad. Sci. SSSR , 38 (1943) (In Russian)
[a2] S. Chandrasekhar, "Radiative transfer" , Dover, reprint (1960)
[a3] R. Bellman, G.M. Wing, "An introduction to invariant imbedding" , Wiley (1975)
How to Cite This Entry:
Invariant imbedding. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_imbedding&oldid=14990
This article was adapted from an original article by G.M. Wing (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article