Namespaces
Variants
Actions

Difference between revisions of "Interval order"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
''interval ordering, interval partially ordered set, interval poset''
 
''interval ordering, interval partially ordered set, interval poset''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200701.png" /> be a set of closed intervals of the real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200702.png" />. A partial ordering is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200703.png" /> by
+
A partial order on the set $S$ of closed intervals of the real line $\mathbb{R}$, defined by
 +
$$
 +
I_1 \le I_2 \Leftrightarrow x \le y\ \text{in}\ \mathbb{R}\ \text{for all}\ x\in I_1,\,y \in I_2\ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200704.png" /></td> </tr></table>
+
Such a [[partially ordered set]] (more precisely, one isomorphic to it) is called an interval order.
  
Such a [[Partially ordered set|partially ordered set]] (more precisely, one isomorphic to it) is called an interval order.
+
A linear order, also called a [[totally ordered set]], is an interval order (but an interval order need not be total, of course).
  
A linear order, also called a [[Totally ordered set|totally ordered set]], is an interval order (but an interval order need not be total, of course).
+
There is the following forbidden sub-poset characterization of interval orders (the Fishburn theorem, [[#References|[a1]]]): A poset $P$ is an interval order if and only if $P$ does not contain the disjoint sum $\mathbf{2} + \mathbf{2}$ as a sub-poset (cf. also [[Disjoint sum of partially ordered sets]]). Here, $\mathbf{2}$ is the totally ordered set $\{1,2\}$, $1<2$, so that $\mathbf{2} + \mathbf{2} = \{a_1,a_2,b_1,b_2\}$ with $a_1 < a_2$, $b_1 < b_2$ and no other comparable pairs of distinct elements.
  
There is the following forbidden sub-poset characterization of interval orders (the Fishburn theorem, [[#References|[a1]]]): A poset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200705.png" /> is an interval order if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200706.png" /> does not contain the disjoint sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200707.png" /> as a sub-poset (cf. also [[Disjoint sum of partially ordered sets|Disjoint sum of partially ordered sets]]). Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200708.png" /> is the totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i1200709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007010.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007011.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007013.png" /> and no other comparable pairs of unequal elements.
+
A poset is called a semi-order if there is a function $f : P \rightarrow \mathbf{R}$ such that $x < y$ in $P$ if and only if $f(y) > f(x)+1$. Clearly, a semi-order is isomorphic to an interval order with all intervals of length $1$. Here too, a forbidden sub-poset characterization holds (the Scott–Suppes theorem, [[#References|[a2]]]): A poset $P$ is a semi-order if and only if it does not contain either $\mathbf{2} + \mathbf{2}$ or $\mathbf{3} + \mathbf{1}$ as a sub-poset.
 
 
A poset is called a semi-order if there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007014.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007016.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007017.png" />. Clearly, a semi-order is isomorphic to an interval order with all intervals of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007018.png" />. Here too, a forbidden sub-poset characterization holds (the Scott–Suppes theorem, [[#References|[a2]]]): A poset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007019.png" /> is a semi-order if and only if it does not contain either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007020.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i120/i120070/i12007021.png" /> as a sub-poset.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.C. Fishburn,  "Intransitive indifference with unequal indifference intervals"  ''J. Math. Psychol.'' , '''7'''  (1970)  pp. 144–149</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Scott,  P. Suppes,  "Foundational aspects of the theories of measurement"  ''J. Symbolic Logic'' , '''23'''  (1958)  pp. 113–128</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.T. Trotter,  "Partially ordered sets"  R.L. Graham (ed.)  M. Grötschel (ed.)  L. Lovász (ed.) , ''Handbook of Combinatorics'' , '''I''' , North-Holland  (1995)  pp. 433–480</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  P.C. Fishburn,  "Intransitive indifference with unequal indifference intervals"  ''J. Math. Psychol.'' , '''7'''  (1970)  pp. 144–149</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Scott,  P. Suppes,  "Foundational aspects of the theories of measurement"  ''J. Symbolic Logic'' , '''23'''  (1958)  pp. 113–128</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  W.T. Trotter,  "Partially ordered sets"  R.L. Graham (ed.)  M. Grötschel (ed.)  L. Lovász (ed.) , ''Handbook of Combinatorics'' , '''I''' , North-Holland  (1995)  pp. 433–480</TD></TR>
 +
</table>

Revision as of 21:24, 1 December 2014

interval ordering, interval partially ordered set, interval poset

A partial order on the set $S$ of closed intervals of the real line $\mathbb{R}$, defined by $$ I_1 \le I_2 \Leftrightarrow x \le y\ \text{in}\ \mathbb{R}\ \text{for all}\ x\in I_1,\,y \in I_2\ . $$

Such a partially ordered set (more precisely, one isomorphic to it) is called an interval order.

A linear order, also called a totally ordered set, is an interval order (but an interval order need not be total, of course).

There is the following forbidden sub-poset characterization of interval orders (the Fishburn theorem, [a1]): A poset $P$ is an interval order if and only if $P$ does not contain the disjoint sum $\mathbf{2} + \mathbf{2}$ as a sub-poset (cf. also Disjoint sum of partially ordered sets). Here, $\mathbf{2}$ is the totally ordered set $\{1,2\}$, $1<2$, so that $\mathbf{2} + \mathbf{2} = \{a_1,a_2,b_1,b_2\}$ with $a_1 < a_2$, $b_1 < b_2$ and no other comparable pairs of distinct elements.

A poset is called a semi-order if there is a function $f : P \rightarrow \mathbf{R}$ such that $x < y$ in $P$ if and only if $f(y) > f(x)+1$. Clearly, a semi-order is isomorphic to an interval order with all intervals of length $1$. Here too, a forbidden sub-poset characterization holds (the Scott–Suppes theorem, [a2]): A poset $P$ is a semi-order if and only if it does not contain either $\mathbf{2} + \mathbf{2}$ or $\mathbf{3} + \mathbf{1}$ as a sub-poset.

References

[a1] P.C. Fishburn, "Intransitive indifference with unequal indifference intervals" J. Math. Psychol. , 7 (1970) pp. 144–149
[a2] D. Scott, P. Suppes, "Foundational aspects of the theories of measurement" J. Symbolic Logic , 23 (1958) pp. 113–128
[a3] W.T. Trotter, "Partially ordered sets" R.L. Graham (ed.) M. Grötschel (ed.) L. Lovász (ed.) , Handbook of Combinatorics , I , North-Holland (1995) pp. 433–480
How to Cite This Entry:
Interval order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interval_order&oldid=12268
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article