Namespaces
Variants
Actions

Interior of a set

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 54A [MSN][ZBL]

of a set $A$ in a topological space $X$

The interior, or (open) kernel, of $A$ is the set of all interior points of $A$: the union of all open sets of $X$ which are subsets of $A$; a point $x \in A$ is interior if there is a neighbourhood $N_x$ contained in $A$ and containing $x$. The interior may be denoted $A^\circ$, $\mathrm{Int} A$ or $\langle A \rangle$.

The interior of $A$ is the complement in $A$ of the boundary of $A$. If $A$ and $B$ are mutually complementary sets in a topological space $X$, that is, if $B = X \setminus A$, then the interior of $A$ is the complement of the closure of $B$: $X \setminus [A] = \langle B \rangle$ and $X \setminus \langle B \rangle = [ A ]$.

The interior of a closed set in a topological space $X$ is a regular open or canonical set. Spaces in which the open canonical sets form a base for the topology are called semi-regular. Every regular space is semi-regular.

The terminology "kernel" is seldom used in this context in the modern English mathematical literature.

References

[1] Franz, Wolfgang. General topology (Harrap, 1967).
[2] John L. Kelley, General Topology, Graduate Texts in Mathematics 27, Springer (1975) ISBN 0-387-90125-6
How to Cite This Entry:
Interior of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interior_of_a_set&oldid=54692
This article was adapted from an original article by S.M. Sirota (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article