Namespaces
Variants
Actions

Integral sine

From Encyclopedia of Mathematics
Revision as of 21:27, 1 January 2019 by Ivan (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The special function defined for real $x$ by

$$\operatorname{Si}(x)=\int\limits_0^x\frac{\sin t}{t}\,dt.$$

For $x>0$ one has

$$\operatorname{Si}(x)=\frac\pi2-\int\limits_x^\infty\frac{\sin t}{t}\,dt.$$

One sometimes uses the notation

$$\operatorname{si}(x)=-\int\limits_x^\infty\frac{\sin t}{t}\,dt\equiv\operatorname{Si}(x)-\frac\pi2.$$

Some particular values are:

$$\operatorname{Si}(0)=0,\qquad\operatorname{Si}(\infty)=\frac\pi2,\qquad\operatorname{si}(\infty)=0.$$

Some special relations:

$$\operatorname{Si}(-x)=-\operatorname{Si}(x);\qquad\operatorname{si}(x)+\operatorname{si}(-x)=-\pi;$$

$$\int\limits_0^\infty\operatorname{si}^2(t)\,dt=\frac\pi2;\qquad\int\limits_0^\infty e^{-pt}\operatorname{si}(qt)\,dt=-\frac1p\arctan\frac pq;$$

$$\int\limits_0^\infty\sin t\operatorname{si}(t)\,dt=-\frac\pi4;\qquad\int\limits_0^\infty\operatorname{Ci}(t)\operatorname{si}(t)\,dt=-\ln2,$$

where $\operatorname{Ci}(t)$ is the integral cosine. For $x$ small,

$$\operatorname{Si}(x)\approx x.$$

The asymptotic representation for large $x$ is

$$\operatorname{Si}(x)=\frac\pi2-\frac{\cos x}{x}P(x)-\frac{\sin x}{x}Q(x),$$

where

$$P(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k)!}{x^{2k}},$$

$$Q(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k+1)!}{x^{2k+1}}.$$

The integral sine has the series representation

$$\operatorname{Si}(x)=x-\frac{x^3}{3!\,3}+\dotsb+(-1)^k\frac{x^{2k+1}}{(2k+1)!\,(2k+1)}+\dotsb.\label{*}\tag{*}$$

As a function of the complex variable $z$, $\operatorname{Si}(z)$, defined by \eqref{*}, is an entire function of $z$ in the $z$-plane.

The integral sine is related to the integral exponential function $\operatorname{Ei}(z)$ by

$$\operatorname{si}(z)=\frac{1}{2i}[\operatorname{Ei}(iz)-\operatorname{Ei}(-iz)].$$

See also Si-ci-spiral.

For references, and the graph of the integral sine, see Integral cosine.


Comments

This function is better known as the sine integral.

How to Cite This Entry:
Integral sine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_sine&oldid=43643
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article