Namespaces
Variants
Actions

Difference between revisions of "Integral cosine"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(OldImage template added)
 
(One intermediate revision by the same user not shown)
Line 90: Line 90:
  
 
$$  
 
$$  
P ( x)  \sim  \sum _ { k= } 0 ^  \infty   
+
P ( x)  \sim  \sum_{k=0}^  \infty   
 
\frac{( - 1 )  ^ {k} (
 
\frac{( - 1 )  ^ {k} (
 
2 k ) ! }{x  ^ {2k} }
 
2 k ) ! }{x  ^ {2k} }
  ,\  Q ( x)  \sim  \sum _ { k= } 0 ^  \infty   
+
  ,\  Q ( x)  \sim  \sum_{k=0}^  \infty   
\frac{( - 1 )  ^ {k} ( 2 k + 1 ) ! }{x  ^ {2k+} 1 }
+
\frac{( - 1 )  ^ {k} ( 2 k + 1 ) ! }{x  ^ {2k+1} }
 
  .
 
  .
 
$$
 
$$
Line 130: Line 130:
 
$$
 
$$
  
The integral cosine is related to the [[Integral exponential function|integral exponential function]]  $  \mathop{\rm Ei} ( z) $
+
The integral cosine is related to the [[integral exponential function]]  $  \mathop{\rm Ei} ( z) $
 
by
 
by
  
Line 148: Line 148:
  
 
====Comments====
 
====Comments====
The function $   \mathop{\rm Ci} $
+
The function $\mathop{\rm Ci}$ is better known as the cosine integral. It can, of course, be defined by the integral (as above) in  $  \mathbf C \setminus  \{ {x \in \mathbf R } : {x \leq  0 } \} $.
is better known as the cosine integral. It can, of course, be defined by the integral (as above) in  $  \mathbf C \setminus  \{ {x \in \mathbf R } : {x \leq  0 } \} $.
+
 
 +
{{OldImage}}

Latest revision as of 19:18, 11 January 2024


The special function defined, for real $ x > 0 $, by

$$ \mathop{\rm Ci} ( x) = - \int\limits _ { x } ^ \infty \frac{\cos t }{t } \ d t = c + \mathop{\rm ln} x - \int\limits _ { 0 } ^ { x } \frac{1 - \cos t }{t } \ d t , $$

where $ c = 0.5772 \dots $ is the Euler constant. Its graph is:

Figure: i051370a

The graphs of the functions $ y = \mathop{\rm ci} ( x) $ and $ y = \mathop{\rm si} ( x) $.

Some integrals related to the integral cosine are:

$$ \int\limits _ { 0 } ^ \infty e ^ {- p t } \mathop{\rm Ci} ( q t ) d t = - \frac{1}{2p} \mathop{\rm ln} \left ( 1 + \frac{p ^ {2} }{q ^ {2} } \right ) , $$

$$ \int\limits _ { 0 } ^ \infty \cos t \mathop{\rm Ci} ( t) \ d t = - \frac \pi {4} ,\ \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ^ {2} ( t) d t = \frac \pi {2} , $$

$$ \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ( t) \mathop{\rm si} ( t) d t = - \mathop{\rm ln} 2 , $$

where $ \mathop{\rm si} ( t) $ is the integral sine minus $ \pi / 2 $.

For $ x $ small:

$$ \mathop{\rm Ci} ( x) \approx c + \mathop{\rm ln} x . $$

The asymptotic representation, for $ x $ large, is:

$$ \mathop{\rm Ci} ( x) = \ \frac{\sin x }{x} P ( x) - \frac{\cos x }{x} Q ( x) , $$

$$ P ( x) \sim \sum_{k=0}^ \infty \frac{( - 1 ) ^ {k} ( 2 k ) ! }{x ^ {2k} } ,\ Q ( x) \sim \sum_{k=0}^ \infty \frac{( - 1 ) ^ {k} ( 2 k + 1 ) ! }{x ^ {2k+1} } . $$

The integral cosine has the series representation:

$$ \tag{* } \mathop{\rm Ci} ( x) = c + \mathop{\rm ln} x - \frac{x ^ {2} }{2!2} + \frac{x ^ {4} }{4!4} - \dots + $$

$$ + ( - 1 ) ^ {k} \frac{x ^ {2k} }{( 2 k ) ! 2 k } + \dots . $$

As a function of the complex variable $ z $, $ \mathop{\rm Ci} ( z) $, defined by (*), is a single-valued analytic function in the $ z $- plane with slit along the relative negative real axis $ ( - \pi < \mathop{\rm arg} z < \pi ) $. The value of $ \mathop{\rm ln} z $ here is taken to be $ \pi < \mathop{\rm Im} \mathop{\rm ln} z < \pi $. The behaviour of $ \mathop{\rm Ci} ( z) $ near the slit is determined by the limits

$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm Ci} ( x \pm i \eta ) = \ \mathop{\rm Ci} ( | z | ) \pm \pi i ,\ x < 0 . $$

The integral cosine is related to the integral exponential function $ \mathop{\rm Ei} ( z) $ by

$$ \mathop{\rm Ci} ( z) = \frac{1}{2} [ \mathop{\rm Ei} ( i z ) + \mathop{\rm Ei} ( - i z ) ] . $$

One sometimes uses the notation $ \mathop{\rm ci} ( x) \equiv \mathop{\rm Ci} ( x) $.

See also Si-ci-spiral.

References

[1] H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953)
[2] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
[3] A. Kratzer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)
[4] N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)

Comments

The function $\mathop{\rm Ci}$ is better known as the cosine integral. It can, of course, be defined by the integral (as above) in $ \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 } \} $.


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Integral cosine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_cosine&oldid=47367
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article