Namespaces
Variants
Actions

Incomplete beta-function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The function defined by the formula

$$I_x(a,b)=\frac1{B(a,b)}\int\limits_0^xt^{a-1}(1-t)^{b-1}dt,$$

$$0\leq x\leq1,\quad a>0,\quad b>0,$$

where

$$B(a,b)=\int\limits_0^1t^{a-1}(1-t)^{b-1}dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

is the beta-function. If $a$ is an integer, then

$$1-I_x(a,b)=\frac{(1-x)^b}{B(a,b)}\sum_{i=0}^{a-1}(-1)^i\begin{pmatrix}a-1\\i\end{pmatrix}\frac{(1-x)^i}{b+i}=$$

$$=(1-x)^{a+b-1}\sum_{i=0}^{a-1}\begin{pmatrix}a+b-1\\i\end{pmatrix}\left(\frac x{1-x}\right)^i.$$

Series representation:

$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace1+\sum_{n=0}^\infty\frac{B(a+1,n+1)}{B(a+b,n+1)}x^{n+1}\right\rbrace,$$

$$0<x<1.$$

Continued fraction representation:

$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace\frac{1|}{|1}+\frac{d_1|}{|1}+\frac{d_2|}{|1}+\dots\right\rbrace,$$

where

$$d_{2m+1}=-\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)},$$

$$d_{2m}=\frac{m(b-m)x}{(a+2m-1)(a+2m)}.$$

Asymptotic representation for large $a$ and $b$:

$$I_x(a,b)=\Phi\left\lbrace3\frac{(bx)^{1/3}\left(1-\frac1{9b}\right)-[a(1-x)]^{1/3}\left(1-\frac1{9a}\right)}{\sqrt{\frac{[a(1-x)]^{2/3}}a+\frac{(bx)^{2/3}}b}}\right\rbrace+$$

$${}+O\left(\frac1{\min{(a,b)}}\right),$$

where

$$\Phi(z)=\frac1{\sqrt{2\pi}}\int\limits_{-\infty}^ze^{-t^2/2}dt.$$

Asymptotic representation for large $b$ and bounded $a$:

$$I_x(a,b)=I\left(\frac{x(2b+a-1)}{2-x},a\right)+O(b^{-2}),$$

where

$$I(z,a)=\frac1{\Gamma(a)}\int\limits_0^ze^{-t}t^{a-1}dt.$$

Connection with the hypergeometric function:

$$I_x(a,b)=\frac{x^a}{aB(x,a)}F(a,1-b;a+1;x).$$

Recurrence relations:

$$I_x(a,b)=1-I_{1-x}(b,a),$$

$$I_x(a,b)=xI_x(a-1,b)+(1-x)I_x(a,b-1),$$

$$I_x(a,a)=\frac12I_{1-y}\left(a,\frac12\right),\quad y=4\left(x-\frac12\right)^2,\quad0<x\leq\frac12.$$

References

[1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973)
[2] K. Pearson, "Tables of the incomplete beta-function" , Cambridge Univ. Press (1932)
How to Cite This Entry:
Incomplete beta-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Incomplete_beta-function&oldid=40746
This article was adapted from an original article by V.I. Pagurova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article