Namespaces
Variants
Actions

Difference between revisions of "Hurwitz equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
''Markoff–Hurwitz equation, Markov–Hurwitz equation''
 
''Markoff–Hurwitz equation, Markov–Hurwitz equation''
  
 
A Diophantine equation (cf. [[Diophantine equations|Diophantine equations]]) of the form
 
A Diophantine equation (cf. [[Diophantine equations|Diophantine equations]]) of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
$$x_1^2+\ldots+x_n^2=ax_1\ldots x_n\tag{a1}$$
  
for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103602.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103603.png" />. The case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103604.png" /> was studied by A.A. Markoff [A.A. Markov] [[#References|[a1]]] because of its relation to [[Diophantine approximations|Diophantine approximations]] (cf. also [[Markov spectrum problem|Markov spectrum problem]]). More generally, these equations were studied by A. Hurwitz [[#References|[a2]]]. These equations are of interest because the set of integer solutions to (a1) is closed under the action of the group of automorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103605.png" /> generated by the permutations of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103606.png" />, sign changes of pairs of variables, and the mapping
+
for fixed $a,n\in\mathbf Z^+$, $n\geq3$. The case $n=a=3$ was studied by A.A. Markoff [A.A. Markov] [[#References|[a1]]] because of its relation to [[Diophantine approximations|Diophantine approximations]] (cf. also [[Markov spectrum problem|Markov spectrum problem]]). More generally, these equations were studied by A. Hurwitz [[#References|[a2]]]. These equations are of interest because the set of integer solutions to \ref{a1} is closed under the action of the group of automorphisms $\mathcal A$ generated by the permutations of the variables $\{x_1,\ldots,x_n\}$, sign changes of pairs of variables, and the mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103607.png" /></td> </tr></table>
+
$$\sigma(x_1,\ldots,x_n)=(ax_2\ldots x_n-x_1,x_2,\ldots,x_n).$$
  
If (a1) has an integer solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103608.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h1103609.png" /> is not the trivial solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036010.png" />, then its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036011.png" />-orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036012.png" /> is infinite. Hurwitz showed that if (a1) has a non-trivial integer solution, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036013.png" />; and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036014.png" />, then the full set of integer solutions is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036015.png" />-orbit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036016.png" /> together with the trivial solution. N.P. Herzberg [[#References|[a3]]] gave an efficient algorithm to find pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036017.png" /> for which the Hurwitz equation has a non-trivial solution. Hurwitz also showed that for any pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036018.png" /> there exists a finite set of fundamental solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036019.png" /> such that the orbits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036020.png" /> are distinct and the set of non-trivial integer solutions is exactly the union of these orbits. A. Baragar [[#References|[a4]]] showed that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036021.png" /> there exists a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036022.png" /> such that (a1) has at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036023.png" /> fundamental solutions.
+
If \ref{a1} has an integer solution $P$ and $P$ is not the trivial solution $(0,\ldots,0)$, then its $\mathcal A$-orbit $\mathcal A(P)$ is infinite. Hurwitz showed that if \ref{a1} has a non-trivial integer solution, then $a\leq n$; and if $a=n$, then the full set of integer solutions is the $\mathcal A$-orbit of $(1,\ldots,1)$ together with the trivial solution. N.P. Herzberg [[#References|[a3]]] gave an efficient algorithm to find pairs $(a,n)$ for which the Hurwitz equation has a non-trivial solution. Hurwitz also showed that for any pair $(a,n)$ there exists a finite set of fundamental solutions $\{P_1,\ldots,P_r\}$ such that the orbits $\mathcal A(P_i)$ are distinct and the set of non-trivial integer solutions is exactly the union of these orbits. A. Baragar [[#References|[a4]]] showed that for any $r$ there exists a pair $(a,n)$ such that \ref{a1} has at least $r$ fundamental solutions.
  
D. Zagier [[#References|[a5]]] investigated the asymptotic growth for the number of solutions to the Markov equation (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036024.png" />) below a given bound, and Baragar [[#References|[a6]]] investigated the cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036025.png" />.
+
D. Zagier [[#References|[a5]]] investigated the asymptotic growth for the number of solutions to the Markov equation ($a=n=3$) below a given bound, and Baragar [[#References|[a6]]] investigated the cases $n\geq4$.
  
 
There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [[#References|[a7]]] and G. Rosenberger [[#References|[a8]]]. L. Wang [[#References|[a9]]] studied a class of smooth variations.
 
There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [[#References|[a7]]] and G. Rosenberger [[#References|[a8]]]. L. Wang [[#References|[a9]]] studied a class of smooth variations.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Markoff,  "Sur les formes binaires indéfinies"  ''Math. Ann.'' , '''17'''  (1880)  pp. 379–399</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Hurwitz,  "Über eine Aufgabe der unbestimmten Analysis"  ''Archiv. Math. Phys.'' , '''3'''  (1907)  pp. 185–196  (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.P. Herzberg,  "On a problem of Hurwitz"  ''Pacific J. Math.'' , '''50'''  (1974)  pp. 485–493</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Baragar,  "Integral solutions of Markoff–Hurwitz equations"  ''J. Number Th.'' , '''49''' :  1  (1994)  pp. 27–44</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D. Zagier,  "On the number of Markoff numbers below a given bound"  ''Math. Comp.'' , '''39'''  (1982)  pp. 709–723</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Baragar,  "Asymptotic growth of Markoff–Hurwitz numbers"  ''Compositio Math.'' , '''94'''  (1994)  pp. 1–18</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L.J. Mordell,  "On the integer solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036026.png" />"  ''J. London Math. Soc.'' , '''28'''  (1953)  pp. 500–510</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  G. Rosenberger,  "Über die Diophantische Gleichung <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036027.png" />"  ''J. Reine Angew. Math.'' , '''305'''  (1979)  pp. 122–125</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  L. Wang,  "Rational points and canonical heights on K3-surfaces in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110360/h11036028.png" />"  ''Contemp. Math.'' , '''186'''  (1995)  pp. 273–289</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Markoff,  "Sur les formes binaires indéfinies"  ''Math. Ann.'' , '''17'''  (1880)  pp. 379–399</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Hurwitz,  "Über eine Aufgabe der unbestimmten Analysis"  ''Archiv. Math. Phys.'' , '''3'''  (1907)  pp. 185–196  (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.P. Herzberg,  "On a problem of Hurwitz"  ''Pacific J. Math.'' , '''50'''  (1974)  pp. 485–493</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Baragar,  "Integral solutions of Markoff–Hurwitz equations"  ''J. Number Th.'' , '''49''' :  1  (1994)  pp. 27–44</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D. Zagier,  "On the number of Markoff numbers below a given bound"  ''Math. Comp.'' , '''39'''  (1982)  pp. 709–723</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Baragar,  "Asymptotic growth of Markoff–Hurwitz numbers"  ''Compositio Math.'' , '''94'''  (1994)  pp. 1–18</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L.J. Mordell,  "On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$"  ''J. London Math. Soc.'' , '''28'''  (1953)  pp. 500–510</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  G. Rosenberger,  "Über die Diophantische Gleichung $ax^2+by^2+cz^2=dxyz$"  ''J. Reine Angew. Math.'' , '''305'''  (1979)  pp. 122–125</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  L. Wang,  "Rational points and canonical heights on K3-surfaces in $\mathbf P^1\times\mathbf P^1\times\mathbf P^1$"  ''Contemp. Math.'' , '''186'''  (1995)  pp. 273–289</TD></TR></table>

Revision as of 14:50, 13 August 2014

Markoff–Hurwitz equation, Markov–Hurwitz equation

A Diophantine equation (cf. Diophantine equations) of the form

$$x_1^2+\ldots+x_n^2=ax_1\ldots x_n\tag{a1}$$

for fixed $a,n\in\mathbf Z^+$, $n\geq3$. The case $n=a=3$ was studied by A.A. Markoff [A.A. Markov] [a1] because of its relation to Diophantine approximations (cf. also Markov spectrum problem). More generally, these equations were studied by A. Hurwitz [a2]. These equations are of interest because the set of integer solutions to \ref{a1} is closed under the action of the group of automorphisms $\mathcal A$ generated by the permutations of the variables $\{x_1,\ldots,x_n\}$, sign changes of pairs of variables, and the mapping

$$\sigma(x_1,\ldots,x_n)=(ax_2\ldots x_n-x_1,x_2,\ldots,x_n).$$

If \ref{a1} has an integer solution $P$ and $P$ is not the trivial solution $(0,\ldots,0)$, then its $\mathcal A$-orbit $\mathcal A(P)$ is infinite. Hurwitz showed that if \ref{a1} has a non-trivial integer solution, then $a\leq n$; and if $a=n$, then the full set of integer solutions is the $\mathcal A$-orbit of $(1,\ldots,1)$ together with the trivial solution. N.P. Herzberg [a3] gave an efficient algorithm to find pairs $(a,n)$ for which the Hurwitz equation has a non-trivial solution. Hurwitz also showed that for any pair $(a,n)$ there exists a finite set of fundamental solutions $\{P_1,\ldots,P_r\}$ such that the orbits $\mathcal A(P_i)$ are distinct and the set of non-trivial integer solutions is exactly the union of these orbits. A. Baragar [a4] showed that for any $r$ there exists a pair $(a,n)$ such that \ref{a1} has at least $r$ fundamental solutions.

D. Zagier [a5] investigated the asymptotic growth for the number of solutions to the Markov equation ($a=n=3$) below a given bound, and Baragar [a6] investigated the cases $n\geq4$.

There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [a7] and G. Rosenberger [a8]. L. Wang [a9] studied a class of smooth variations.

References

[a1] A.A. Markoff, "Sur les formes binaires indéfinies" Math. Ann. , 17 (1880) pp. 379–399
[a2] A. Hurwitz, "Über eine Aufgabe der unbestimmten Analysis" Archiv. Math. Phys. , 3 (1907) pp. 185–196 (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421)
[a3] N.P. Herzberg, "On a problem of Hurwitz" Pacific J. Math. , 50 (1974) pp. 485–493
[a4] A. Baragar, "Integral solutions of Markoff–Hurwitz equations" J. Number Th. , 49 : 1 (1994) pp. 27–44
[a5] D. Zagier, "On the number of Markoff numbers below a given bound" Math. Comp. , 39 (1982) pp. 709–723
[a6] A. Baragar, "Asymptotic growth of Markoff–Hurwitz numbers" Compositio Math. , 94 (1994) pp. 1–18
[a7] L.J. Mordell, "On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$" J. London Math. Soc. , 28 (1953) pp. 500–510
[a8] G. Rosenberger, "Über die Diophantische Gleichung $ax^2+by^2+cz^2=dxyz$" J. Reine Angew. Math. , 305 (1979) pp. 122–125
[a9] L. Wang, "Rational points and canonical heights on K3-surfaces in $\mathbf P^1\times\mathbf P^1\times\mathbf P^1$" Contemp. Math. , 186 (1995) pp. 273–289
How to Cite This Entry:
Hurwitz equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_equation&oldid=16935
This article was adapted from an original article by A. Baragar (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article