Namespaces
Variants
Actions

Difference between revisions of "Homogeneous convex cone"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
An open strictly-convex cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476501.png" /> in the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476502.png" /> that is homogeneous with respect to the group of linear transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476503.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476504.png" /> (the so-called automorphisms of the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476505.png" />). Two homogeneous convex cones <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476507.png" /> are called isomorphic if there exists an isomorphism of the ambient vector spaces taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476508.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h0476509.png" />.
+
<!--
 +
h0476501.png
 +
$#A+1 = 46 n = 0
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/H047/H.0407650 Homogeneous convex cone
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
An open strictly-convex cone  $  V $
 +
in the vector space $  \mathbf R  ^ {n} $
 +
that is homogeneous with respect to the group of linear transformations $  \alpha \in  \mathop{\rm GL} _ {n} ( \mathbf R ) $
 +
for which $  \alpha V = V $(
 +
the so-called automorphisms of the cone $  V $).  
 +
Two homogeneous convex cones $  V _ {1} $
 +
and $  V _ {2} $
 +
are called isomorphic if there exists an isomorphism of the ambient vector spaces taking $  V _ {1} $
 +
onto $  V _ {2} $.
  
 
===Examples.===
 
===Examples.===
 
  
 
1) The spherical cone
 
1) The spherical cone
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765010.png" /></td> </tr></table>
+
$$
 +
K _ {n}  = \{ {x \in \mathbf R  ^ {n+} 1 } : {
 +
x _ {0}  ^ {2} > x _ {1}  ^ {2} + \dots + x _ {n}  ^ {2} } \}
 +
.
 +
$$
  
The automorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765011.png" /> is the direct product of a subgroup of index 2 of the Lorentz group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765012.png" /> (isomorphic to the group of motions of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765013.png" />-dimensional Lobachevskii space) and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765014.png" /> of homotheties with positive coefficients.
+
The automorphism group of $  K _ {n} $
 +
is the direct product of a subgroup of index 2 of the Lorentz group $  O _ {n,1} ( \mathbf R ) $(
 +
isomorphic to the group of motions of the $  n $-
 +
dimensional Lobachevskii space) and the group $  \mathbf R  ^ {+} $
 +
of homotheties with positive coefficients.
  
2) The cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765015.png" /> of positive-definite real symmetric matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765016.png" />. The automorphism group of this cone consists of the transformations
+
2) The cone $  P _ {n} ( \mathbf R ) $
 +
of positive-definite real symmetric matrices of order $  n $.  
 +
The automorphism group of this cone consists of the transformations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765017.png" /></td> </tr></table>
+
$$
 +
x  \rightarrow  g x g  ^ {t} ,\ \
 +
g \in  \mathop{\rm GL} _ {n} ( \mathbf R ) .
 +
$$
  
3) The cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765018.png" /> of positive-definite complex Hermitian matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765019.png" />.
+
3) The cone $  P _ {n} ( \mathbf C ) $
 +
of positive-definite complex Hermitian matrices of order $  n $.
  
4) The cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765020.png" /> of positive-definite quaternion Hermitian matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765021.png" />.
+
4) The cone $  P _ {n} ( \mathbf H ) $
 +
of positive-definite quaternion Hermitian matrices of order $  n $.
  
The convex cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765022.png" /> dual to the homogeneous convex cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765023.png" /> (i.e. the cone in the dual space consisting of all linear forms that are positive on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765024.png" />) is also homogeneous. A homogeneous convex cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765025.png" /> is called self-dual if there exists a Euclidean metric on the ambient vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765026.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765027.png" /> under the identification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765028.png" /> with its dual by means of this metric. All the examples of homogeneous convex cones given above are self-dual.
+
The convex cone $  V  ^  \prime  $
 +
dual to the homogeneous convex cone $  V $(
 +
i.e. the cone in the dual space consisting of all linear forms that are positive on $  V $)  
 +
is also homogeneous. A homogeneous convex cone $  V $
 +
is called self-dual if there exists a Euclidean metric on the ambient vector space $  \mathbf R  ^ {n} $
 +
such that $  V = V  ^  \prime  $
 +
under the identification of $  \mathbf R  ^ {n} $
 +
with its dual by means of this metric. All the examples of homogeneous convex cones given above are self-dual.
  
The classification of self-dual homogeneous convex cones is based on their relation with compact Jordan algebras (cf. [[Jordan algebra|Jordan algebra]]) (see [[#References|[1]]]), [[#References|[2]]]). A real Jordan algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765029.png" /> is called compact if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765030.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765033.png" /> is the operator of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765034.png" /> in the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765035.png" />. Complexification establishes a one-to-one correspondence between the classes of isomorphic compact Jordan algebras and the classes of isomorphic semi-simple complex Jordan algebras. The set of squares of invertible elements of a compact Jordan algebra is a self-dual homogeneous convex cone, and all self-dual homogeneous convex cones can be obtained in this way. Hence it can be deduced that every self-dual homogeneous convex cone is isomorphic to a direct product of cones of the four types described above and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765036.png" />-dimensional cone, related to the exceptional simple Jordan algebra.
+
The classification of self-dual homogeneous convex cones is based on their relation with compact Jordan algebras (cf. [[Jordan algebra|Jordan algebra]]) (see [[#References|[1]]]), [[#References|[2]]]). A real Jordan algebra $  A $
 +
is called compact if $  \mathop{\rm Tr}  T ( a )  ^ {2} > 0 $
 +
for all $  a \in A $,  
 +
$  a \neq 0 $,  
 +
where $  T ( a) $
 +
is the operator of multiplication by $  a $
 +
in the algebra $  A $.  
 +
Complexification establishes a one-to-one correspondence between the classes of isomorphic compact Jordan algebras and the classes of isomorphic semi-simple complex Jordan algebras. The set of squares of invertible elements of a compact Jordan algebra is a self-dual homogeneous convex cone, and all self-dual homogeneous convex cones can be obtained in this way. Hence it can be deduced that every self-dual homogeneous convex cone is isomorphic to a direct product of cones of the four types described above and a $  27 $-
 +
dimensional cone, related to the exceptional simple Jordan algebra.
  
An arbitrary homogeneous convex cone can be represented as a cone of positive-definite Hermitian matrices in a generalized matrix algebra . The simplest example of a non-self-dual homogeneous convex cone is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765037.png" />-dimensional cone of positive-definite symmetric real matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765038.png" /> of order 3 satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765039.png" />. Starting with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765040.png" />, there is a continuum of non-isomorphic homogeneous convex cones in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765041.png" />.
+
An arbitrary homogeneous convex cone can be represented as a cone of positive-definite Hermitian matrices in a generalized matrix algebra . The simplest example of a non-self-dual homogeneous convex cone is the $  5 $-
 +
dimensional cone of positive-definite symmetric real matrices $  x = [ x _ {ij} ] $
 +
of order 3 satisfying the condition $  x _ {23} = x _ {32} = 0 $.  
 +
Starting with $  n = 11 $,  
 +
there is a continuum of non-isomorphic homogeneous convex cones in $  \mathbf R  ^ {n} $.
  
In every homogeneous convex cone a complete [[Riemannian metric|Riemannian metric]] can be defined in a canonical way, and it is invariant with respect to all its automorphisms. Self-dual homogeneous convex cones are characterized by the property that they are symmetric spaces (cf. [[Symmetric space|Symmetric space]]) with respect to this metric. The stabilizer of any point in a homogeneous convex cone is a maximal compact subgroup of its automorphism group. The stabilizer of the identity of a compact Jordan algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765042.png" /> in the automorphism group of the homogeneous convex cone associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765043.png" /> coincides with the automorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765044.png" />. Every homogeneous convex cone admits a simply-transitive automorphism group, reducing to triangle form in some basis.
+
In every homogeneous convex cone a complete [[Riemannian metric|Riemannian metric]] can be defined in a canonical way, and it is invariant with respect to all its automorphisms. Self-dual homogeneous convex cones are characterized by the property that they are symmetric spaces (cf. [[Symmetric space|Symmetric space]]) with respect to this metric. The stabilizer of any point in a homogeneous convex cone is a maximal compact subgroup of its automorphism group. The stabilizer of the identity of a compact Jordan algebra $  A $
 +
in the automorphism group of the homogeneous convex cone associated with $  A $
 +
coincides with the automorphism group of $  A $.  
 +
Every homogeneous convex cone admits a simply-transitive automorphism group, reducing to triangle form in some basis.
  
 
Homogeneous convex cones are of special interest in the theory of homogeneous bounded domains (cf. [[Homogeneous bounded domain|Homogeneous bounded domain]]) because these domains can be realized as Siegel domains (cf. [[Siegel domain|Siegel domain]]), and for a Siegel domain of the first or second kind to be homogeneous it is necessary that the convex cone associated with it should be homogeneous. Homogeneous convex cones and their associated Siegel domains are natural carriers for certain analytic constructions, in particular generalizations of Eulerian integrals and hypergeometric functions [[#References|[8]]]. With every homogeneous convex cone there is related a multi-parameter group of Riemann–Liouville integrals, including certain hyperbolic differential operators (for example, the wave operator is obtained in this way in the case of a spherical cone). The strengthened Huygens principle may hold [[#References|[9]]] for these operators.
 
Homogeneous convex cones are of special interest in the theory of homogeneous bounded domains (cf. [[Homogeneous bounded domain|Homogeneous bounded domain]]) because these domains can be realized as Siegel domains (cf. [[Siegel domain|Siegel domain]]), and for a Siegel domain of the first or second kind to be homogeneous it is necessary that the convex cone associated with it should be homogeneous. Homogeneous convex cones and their associated Siegel domains are natural carriers for certain analytic constructions, in particular generalizations of Eulerian integrals and hypergeometric functions [[#References|[8]]]. With every homogeneous convex cone there is related a multi-parameter group of Riemann–Liouville integrals, including certain hyperbolic differential operators (for example, the wave operator is obtained in this way in the case of a spherical cone). The strengthened Huygens principle may hold [[#References|[9]]] for these operators.
  
Investigation of discrete automorphism groups of self-dual homogeneous convex cones is important for the compactification and reduction of singularities of locally symmetric spaces [[#References|[4]]]. Many results in classical reduction theory obtained for the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765045.png" /> acting on the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047650/h04765046.png" /> can be generalized to arbitrary self-dual homogeneous convex cones (see [[#References|[5]]], [[#References|[6]]]).
+
Investigation of discrete automorphism groups of self-dual homogeneous convex cones is important for the compactification and reduction of singularities of locally symmetric spaces [[#References|[4]]]. Many results in classical reduction theory obtained for the group $  \mathop{\rm SL} _ {n} ( \mathbf Z ) $
 +
acting on the cone $  P _ {n} ( \mathbf R ) $
 +
can be generalized to arbitrary self-dual homogeneous convex cones (see [[#References|[5]]], [[#References|[6]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Koecher,   "Die Geodätischen von Positivitätsbereichen" ''Math. Ann.'' , '''135''' : 3 (1958) pp. 192–202</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg,   "Homogeneous cones" ''Soviet Math. Dokl.'' , '''1''' (1960) pp. 787–790 ''Dokl. Akad. Nauk SSSR'' , '''133''' : 1 (1960) pp. 9–12</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> E.B. Vinberg,   "The theory of convex homogeneous cones" ''Trans. Amer. Math. Soc.'' , '''12''' (1963) pp. 340–403 ''Trudy Moskov. Mat. Obshch.'' , '''12''' (1963) pp. 303–358</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> E.B. Vinberg,   "The structure of the structure group of automorphisms of a homogeneous convex cone" ''Trans. Amer. Math. Soc.'' , '''13''' (1965) pp. 63–93 ''Trudy Moskov. Mat. Obshch.'' , '''13''' (1965) pp. 56–83</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Ash,   et al.,   "Smooth compactification of locally symmetric varieties" , Math. Sci. Press (1975)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.-H. Helwig,   "Zur Koecherschen Reduktionstheorie in Positivitätsbereichen I-III" ''Mat. Z.'' , '''91''' (1966) pp. 152–168; 169–178; 355–362</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A. Ash,   "On entactic forms" ''Canad. J. Math.'' , '''29''' : 5 (1977) pp. 1040–1054</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> O.S. Rothaus,   "The construction of homogeneous convex cones" ''Ann. of Math.'' , '''83''' (1966) pp. 358–376</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> O.S. Rothaus,   "Correction to: The construction of homogeneous convex cones" ''Ann. of Math.'' , '''87''' (1968) pp. 399</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S.G. Gindikin,   "Analysis in homogeneous domains" ''Russian Math. Surveys'' , '''19''' : 4 (1964) pp. 1–89 ''Uspekhi Mat. Nauk'' , '''19''' : 4 (1964) pp. 3–92</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> B.R. Vainberg,   S.G. Gindikin,   "On the strong Huygens principle for a class of differential operators with constant coefficients" ''Trans. Amer. Math. Soc.'' , '''16''' (1967) pp. 163–196 ''Trudy Moskov. Mat. Obshch.'' , '''16''' (1967) pp. 151–180</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Koecher, "Die Geodätischen von Positivitätsbereichen" ''Math. Ann.'' , '''135''' : 3 (1958) pp. 192–202 {{MR|0103987}} {{ZBL|0083.07202}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg, "Homogeneous cones" ''Soviet Math. Dokl.'' , '''1''' (1960) pp. 787–790 ''Dokl. Akad. Nauk SSSR'' , '''133''' : 1 (1960) pp. 9–12 {{MR|0141680}} {{ZBL|0143.05203}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> E.B. Vinberg, "The theory of convex homogeneous cones" ''Trans. Amer. Math. Soc.'' , '''12''' (1963) pp. 340–403 ''Trudy Moskov. Mat. Obshch.'' , '''12''' (1963) pp. 303–358 {{MR|}} {{ZBL|0138.43301}} </TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> E.B. Vinberg, "The structure of the structure group of automorphisms of a homogeneous convex cone" ''Trans. Amer. Math. Soc.'' , '''13''' (1965) pp. 63–93 ''Trudy Moskov. Mat. Obshch.'' , '''13''' (1965) pp. 56–83 {{MR|201575}} {{ZBL|0224.17010}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Ash, et al., "Smooth compactification of locally symmetric varieties" , Math. Sci. Press (1975) {{MR|0457437}} {{ZBL|0334.14007}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.-H. Helwig, "Zur Koecherschen Reduktionstheorie in Positivitätsbereichen I-III" ''Mat. Z.'' , '''91''' (1966) pp. 152–168; 169–178; 355–362 {{MR|}} {{ZBL|0196.30502}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A. Ash, "On entactic forms" ''Canad. J. Math.'' , '''29''' : 5 (1977) pp. 1040–1054</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> O.S. Rothaus, "The construction of homogeneous convex cones" ''Ann. of Math.'' , '''83''' (1966) pp. 358–376 {{MR|0202156}} {{ZBL|0138.43302}} </TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> O.S. Rothaus, "Correction to: The construction of homogeneous convex cones" ''Ann. of Math.'' , '''87''' (1968) pp. 399 {{MR|0225347}} {{ZBL|0179.27402}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S.G. Gindikin, "Analysis in homogeneous domains" ''Russian Math. Surveys'' , '''19''' : 4 (1964) pp. 1–89 ''Uspekhi Mat. Nauk'' , '''19''' : 4 (1964) pp. 3–92 {{MR|0171941}} {{ZBL|0144.08101}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> B.R. Vainberg, S.G. Gindikin, "On the strong Huygens principle for a class of differential operators with constant coefficients" ''Trans. Amer. Math. Soc.'' , '''16''' (1967) pp. 163–196 ''Trudy Moskov. Mat. Obshch.'' , '''16''' (1967) pp. 151–180</TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Faraut,   A. Korányi,   "Fonctions hypergéométriques associées aux cônes symétriques" ''C.R. Acad. Sci. Paris'' , '''307''' (1988) pp. 555–558</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Faraut, A. Korányi, "Fonctions hypergéométriques associées aux cônes symétriques" ''C.R. Acad. Sci. Paris'' , '''307''' (1988) pp. 555–558 {{MR|0967360}} {{ZBL|0658.33006}} </TD></TR></table>

Latest revision as of 22:10, 5 June 2020


An open strictly-convex cone $ V $ in the vector space $ \mathbf R ^ {n} $ that is homogeneous with respect to the group of linear transformations $ \alpha \in \mathop{\rm GL} _ {n} ( \mathbf R ) $ for which $ \alpha V = V $( the so-called automorphisms of the cone $ V $). Two homogeneous convex cones $ V _ {1} $ and $ V _ {2} $ are called isomorphic if there exists an isomorphism of the ambient vector spaces taking $ V _ {1} $ onto $ V _ {2} $.

Examples.

1) The spherical cone

$$ K _ {n} = \{ {x \in \mathbf R ^ {n+} 1 } : { x _ {0} ^ {2} > x _ {1} ^ {2} + \dots + x _ {n} ^ {2} } \} . $$

The automorphism group of $ K _ {n} $ is the direct product of a subgroup of index 2 of the Lorentz group $ O _ {n,1} ( \mathbf R ) $( isomorphic to the group of motions of the $ n $- dimensional Lobachevskii space) and the group $ \mathbf R ^ {+} $ of homotheties with positive coefficients.

2) The cone $ P _ {n} ( \mathbf R ) $ of positive-definite real symmetric matrices of order $ n $. The automorphism group of this cone consists of the transformations

$$ x \rightarrow g x g ^ {t} ,\ \ g \in \mathop{\rm GL} _ {n} ( \mathbf R ) . $$

3) The cone $ P _ {n} ( \mathbf C ) $ of positive-definite complex Hermitian matrices of order $ n $.

4) The cone $ P _ {n} ( \mathbf H ) $ of positive-definite quaternion Hermitian matrices of order $ n $.

The convex cone $ V ^ \prime $ dual to the homogeneous convex cone $ V $( i.e. the cone in the dual space consisting of all linear forms that are positive on $ V $) is also homogeneous. A homogeneous convex cone $ V $ is called self-dual if there exists a Euclidean metric on the ambient vector space $ \mathbf R ^ {n} $ such that $ V = V ^ \prime $ under the identification of $ \mathbf R ^ {n} $ with its dual by means of this metric. All the examples of homogeneous convex cones given above are self-dual.

The classification of self-dual homogeneous convex cones is based on their relation with compact Jordan algebras (cf. Jordan algebra) (see [1]), [2]). A real Jordan algebra $ A $ is called compact if $ \mathop{\rm Tr} T ( a ) ^ {2} > 0 $ for all $ a \in A $, $ a \neq 0 $, where $ T ( a) $ is the operator of multiplication by $ a $ in the algebra $ A $. Complexification establishes a one-to-one correspondence between the classes of isomorphic compact Jordan algebras and the classes of isomorphic semi-simple complex Jordan algebras. The set of squares of invertible elements of a compact Jordan algebra is a self-dual homogeneous convex cone, and all self-dual homogeneous convex cones can be obtained in this way. Hence it can be deduced that every self-dual homogeneous convex cone is isomorphic to a direct product of cones of the four types described above and a $ 27 $- dimensional cone, related to the exceptional simple Jordan algebra.

An arbitrary homogeneous convex cone can be represented as a cone of positive-definite Hermitian matrices in a generalized matrix algebra . The simplest example of a non-self-dual homogeneous convex cone is the $ 5 $- dimensional cone of positive-definite symmetric real matrices $ x = [ x _ {ij} ] $ of order 3 satisfying the condition $ x _ {23} = x _ {32} = 0 $. Starting with $ n = 11 $, there is a continuum of non-isomorphic homogeneous convex cones in $ \mathbf R ^ {n} $.

In every homogeneous convex cone a complete Riemannian metric can be defined in a canonical way, and it is invariant with respect to all its automorphisms. Self-dual homogeneous convex cones are characterized by the property that they are symmetric spaces (cf. Symmetric space) with respect to this metric. The stabilizer of any point in a homogeneous convex cone is a maximal compact subgroup of its automorphism group. The stabilizer of the identity of a compact Jordan algebra $ A $ in the automorphism group of the homogeneous convex cone associated with $ A $ coincides with the automorphism group of $ A $. Every homogeneous convex cone admits a simply-transitive automorphism group, reducing to triangle form in some basis.

Homogeneous convex cones are of special interest in the theory of homogeneous bounded domains (cf. Homogeneous bounded domain) because these domains can be realized as Siegel domains (cf. Siegel domain), and for a Siegel domain of the first or second kind to be homogeneous it is necessary that the convex cone associated with it should be homogeneous. Homogeneous convex cones and their associated Siegel domains are natural carriers for certain analytic constructions, in particular generalizations of Eulerian integrals and hypergeometric functions [8]. With every homogeneous convex cone there is related a multi-parameter group of Riemann–Liouville integrals, including certain hyperbolic differential operators (for example, the wave operator is obtained in this way in the case of a spherical cone). The strengthened Huygens principle may hold [9] for these operators.

Investigation of discrete automorphism groups of self-dual homogeneous convex cones is important for the compactification and reduction of singularities of locally symmetric spaces [4]. Many results in classical reduction theory obtained for the group $ \mathop{\rm SL} _ {n} ( \mathbf Z ) $ acting on the cone $ P _ {n} ( \mathbf R ) $ can be generalized to arbitrary self-dual homogeneous convex cones (see [5], [6]).

References

[1] M. Koecher, "Die Geodätischen von Positivitätsbereichen" Math. Ann. , 135 : 3 (1958) pp. 192–202 MR0103987 Zbl 0083.07202
[2] E.B. Vinberg, "Homogeneous cones" Soviet Math. Dokl. , 1 (1960) pp. 787–790 Dokl. Akad. Nauk SSSR , 133 : 1 (1960) pp. 9–12 MR0141680 Zbl 0143.05203
[3a] E.B. Vinberg, "The theory of convex homogeneous cones" Trans. Amer. Math. Soc. , 12 (1963) pp. 340–403 Trudy Moskov. Mat. Obshch. , 12 (1963) pp. 303–358 Zbl 0138.43301
[3b] E.B. Vinberg, "The structure of the structure group of automorphisms of a homogeneous convex cone" Trans. Amer. Math. Soc. , 13 (1965) pp. 63–93 Trudy Moskov. Mat. Obshch. , 13 (1965) pp. 56–83 MR201575 Zbl 0224.17010
[4] A. Ash, et al., "Smooth compactification of locally symmetric varieties" , Math. Sci. Press (1975) MR0457437 Zbl 0334.14007
[5] K.-H. Helwig, "Zur Koecherschen Reduktionstheorie in Positivitätsbereichen I-III" Mat. Z. , 91 (1966) pp. 152–168; 169–178; 355–362 Zbl 0196.30502
[6] A. Ash, "On entactic forms" Canad. J. Math. , 29 : 5 (1977) pp. 1040–1054
[7a] O.S. Rothaus, "The construction of homogeneous convex cones" Ann. of Math. , 83 (1966) pp. 358–376 MR0202156 Zbl 0138.43302
[7b] O.S. Rothaus, "Correction to: The construction of homogeneous convex cones" Ann. of Math. , 87 (1968) pp. 399 MR0225347 Zbl 0179.27402
[8] S.G. Gindikin, "Analysis in homogeneous domains" Russian Math. Surveys , 19 : 4 (1964) pp. 1–89 Uspekhi Mat. Nauk , 19 : 4 (1964) pp. 3–92 MR0171941 Zbl 0144.08101
[9] B.R. Vainberg, S.G. Gindikin, "On the strong Huygens principle for a class of differential operators with constant coefficients" Trans. Amer. Math. Soc. , 16 (1967) pp. 163–196 Trudy Moskov. Mat. Obshch. , 16 (1967) pp. 151–180

Comments

References

[a1] J. Faraut, A. Korányi, "Fonctions hypergéométriques associées aux cônes symétriques" C.R. Acad. Sci. Paris , 307 (1988) pp. 555–558 MR0967360 Zbl 0658.33006
How to Cite This Entry:
Homogeneous convex cone. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homogeneous_convex_cone&oldid=12880
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article