Namespaces
Variants
Actions

Difference between revisions of "Homoclinic bifurcations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
h1102401.png
 +
$#A+1 = 109 n = 0
 +
$#C+1 = 109 : ~/encyclopedia/old_files/data/H110/H.1100240 Homoclinic bifurcations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Consider an [[Autonomous system|autonomous system]] of ordinary differential equations depending on a parameter
 
Consider an [[Autonomous system|autonomous system]] of ordinary differential equations depending on a parameter
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
$$ \tag{a1 }
 +
{\dot{x} } = f ( x, \alpha ) , \quad x \in \mathbf R  ^ {n} ,  \alpha \in \mathbf R  ^ {1} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102402.png" /> is smooth. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102403.png" /> the [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] corresponding to (a1). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102404.png" /> be an equilibrium of the system at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102405.png" />. An orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102406.png" /> starting at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102407.png" /> is called homoclinic to the equilibrium point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102408.png" /> of (a1) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h1102409.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024010.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024011.png" />. Generically, presence of a homoclinic orbit at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024012.png" /> implies a global codimension-one [[Bifurcation|bifurcation]] of (a1), since the homoclinic orbit disappears for all sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024013.png" />. Moreover, the disappearance of a homoclinic orbit leads to the creation or destruction of one (or more) [[Limit cycle|limit cycle]] nearby. When such a cycle approaches the homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024014.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024015.png" />, its period tends to infinity. In some cases, there are infinitely many limit cycles in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024016.png" /> for sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024017.png" />, since the [[Poincaré return map|Poincaré return map]] near the homoclinic orbit demonstrates Smale's horseshoes [[#References|[a14]]] and their associated shift dynamics.
+
where $  f $
 +
is smooth. Denote by $  \varphi _  \alpha  ^ {t} $
 +
the [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] corresponding to (a1). Let $  x _ {0} $
 +
be an equilibrium of the system at $  \alpha = 0 $.  
 +
An orbit $  \Gamma _ {0} $
 +
starting at a point $  x \in \mathbf R  ^ {n} $
 +
is called homoclinic to the equilibrium point $  x _ {0} $
 +
of (a1) at $  \alpha = 0 $
 +
if $  \varphi _ {0} x  ^ {t} \rightarrow x _ {0} $
 +
as $  t \rightarrow \pm  \infty $.  
 +
Generically, presence of a homoclinic orbit at $  \alpha = 0 $
 +
implies a global codimension-one [[Bifurcation|bifurcation]] of (a1), since the homoclinic orbit disappears for all sufficiently small $  | \alpha | > 0 $.  
 +
Moreover, the disappearance of a homoclinic orbit leads to the creation or destruction of one (or more) [[Limit cycle|limit cycle]] nearby. When such a cycle approaches the homoclinic orbit $  \Gamma _ {0} $
 +
as $  | \alpha | \rightarrow 0 $,  
 +
its period tends to infinity. In some cases, there are infinitely many limit cycles in a neighbourhood of $  \Gamma _ {0} $
 +
for sufficiently small $  | \alpha | $,  
 +
since the [[Poincaré return map|Poincaré return map]] near the homoclinic orbit demonstrates Smale's horseshoes [[#References|[a14]]] and their associated shift dynamics.
  
First, consider the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024018.png" /> is an hyperbolic equilibrium, i.e. the Jacobian matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024019.png" /> has no eigenvalues on the imaginary axis. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024020.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024021.png" /> eigenvalues with positive real part
+
First, consider the case when $  x _ {0} $
 +
is an hyperbolic equilibrium, i.e. the Jacobian matrix $  A = f _ {x} ( x _ {0} ,0 ) $
 +
has no eigenvalues on the imaginary axis. Suppose that $  A $
 +
has $  n _ {u} $
 +
eigenvalues with positive real part
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024022.png" /></td> </tr></table>
+
$$
 +
0 < { \mathop{\rm Re} } \lambda _ {1} \leq  \dots \leq  { \mathop{\rm Re} } \lambda _ {n _ {u}  }
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024023.png" /> eigenvalues with negative real part
+
and $  n _ {s} $
 +
eigenvalues with negative real part
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024024.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm Re} } \mu _ {n _ {s}  } \leq  \dots \leq  { \mathop{\rm Re} } \mu _ {1} < 0
 +
$$
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png" />). The equilibrium <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024026.png" /> has unstable and stable invariant manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024028.png" /> composed by outgoing and incoming orbits, respectively; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024029.png" />.
+
( $  n _ {s} + n _ {u} = n $).  
 +
The equilibrium $  x _ {0} $
 +
has unstable and stable invariant manifolds $  W  ^ {u} ( x _ {0} ) $
 +
and $  W  ^ {s} ( x _ {0} ) $
 +
composed by outgoing and incoming orbits, respectively; $  { \mathop{\rm dim} } {W ^ {u,s } ( x _ {0} ) } = n _ {u,s }  $.
  
The eigenvalues with positive (negative) real part that are closest to the imaginary axis are called the unstable (stable) leading eigenvalues, while the corresponding eigenspaces are called the unstable (stable) leading eigenspaces. Almost all orbits on the stable and unstable manifolds tend to the equilibrium <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024030.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024031.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024032.png" />) along the corresponding leading eigenspace. Exceptional orbits form a non-leading manifold tangent to the eigenspace corresponding to the non-leading eigenvalues.
+
The eigenvalues with positive (negative) real part that are closest to the imaginary axis are called the unstable (stable) leading eigenvalues, while the corresponding eigenspaces are called the unstable (stable) leading eigenspaces. Almost all orbits on the stable and unstable manifolds tend to the equilibrium $  x _ {0} $
 +
as $  t \rightarrow - \infty $(
 +
$  t \rightarrow + \infty $)  
 +
along the corresponding leading eigenspace. Exceptional orbits form a non-leading manifold tangent to the eigenspace corresponding to the non-leading eigenvalues.
  
The saddle quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024033.png" /> of a hyperbolic equilibrium is the sum of the real parts of its leading eigenvalues: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024035.png" /> is a leading unstable eigenvalue and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024036.png" /> is a leading stable eigenvalue. Generically, leading eigenspaces are either one- or two-dimensional. In the first case, an eigenspace corresponds to a simple real eigenvalue, while in the second case it corresponds to a simple pair of complex-conjugate eigenvalues. Reversing the time direction, if necessary, one has only three typical configurations of the leading eigenvalues:
+
The saddle quantity $  \sigma _ {0} $
 +
of a hyperbolic equilibrium is the sum of the real parts of its leading eigenvalues: $  \sigma _ {0} = { \mathop{\rm Re} } \lambda _ {1} + { \mathop{\rm Re} } \mu _ {1} $,  
 +
where $  \lambda _ {1} $
 +
is a leading unstable eigenvalue and $  \mu _ {1} $
 +
is a leading stable eigenvalue. Generically, leading eigenspaces are either one- or two-dimensional. In the first case, an eigenspace corresponds to a simple real eigenvalue, while in the second case it corresponds to a simple pair of complex-conjugate eigenvalues. Reversing the time direction, if necessary, one has only three typical configurations of the leading eigenvalues:
  
a) (saddle) the leading eigenvalues are real and simple: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024037.png" />;
+
a) (saddle) the leading eigenvalues are real and simple: $  \mu _ {1} < 0 < \lambda _ {1} $;
  
b) (saddle-focus) the stable leading eigenvalues are non-real and simple: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024039.png" />, while the unstable leading eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024040.png" /> is real and simple;
+
b) (saddle-focus) the stable leading eigenvalues are non-real and simple: $  \mu _ {1} = {\overline \mu \; } _ {2} $,
 +
$  { \mathop{\rm Re} } \mu _ {1,2 }  < 0 $,  
 +
while the unstable leading eigenvalue $  \lambda _ {1} > 0 $
 +
is real and simple;
  
 
c) (focus-focus) the leading eigenvalues are non-real and simple:
 
c) (focus-focus) the leading eigenvalues are non-real and simple:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024041.png" /></td> </tr></table>
+
$$
 +
\lambda _ {1} = {\overline \lambda \; } _ {2} ,  \mu _ {1} = {\overline \mu \; } _ {2} ,  { \mathop{\rm Re} } \mu _ {1,2 }  < 0 < { \mathop{\rm Re} } \lambda _ {1,2 }  .
 +
$$
  
The following theorems by A.A. Andronov and E.A. Leontovich [[#References|[a1]]] (in the saddle case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024042.png" />) and L.P. Shil'nikov (otherwise) [[#References|[a11]]], [[#References|[a13]]] are valid (see also [[#References|[a15]]], [[#References|[a2]]], [[#References|[a5]]]).
+
The following theorems by A.A. Andronov and E.A. Leontovich [[#References|[a1]]] (in the saddle case when $  n = 2 $)  
 +
and L.P. Shil'nikov (otherwise) [[#References|[a11]]], [[#References|[a13]]] are valid (see also [[#References|[a15]]], [[#References|[a2]]], [[#References|[a5]]]).
  
(Saddle) For any generic one-parameter system (a1) having a saddle equilibrium point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024043.png" /> with a homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024044.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024045.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024046.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024047.png" /> in which a unique limit cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024048.png" /> bifurcates from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024049.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024050.png" /> passes through zero. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024051.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024052.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024053.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024054.png" />.
+
(Saddle) For any generic one-parameter system (a1) having a saddle equilibrium point $  x _ {0} $
 +
with a homoclinic orbit $  \Gamma _ {0} $
 +
at $  \alpha = 0 $,  
 +
there exists a neighbourhood $  U _ {0} $
 +
of $  \Gamma _ {0} \cup x _ {0} $
 +
in which a unique limit cycle $  L _  \alpha  $
 +
bifurcates from $  \Gamma _ {0} $
 +
as $  \alpha $
 +
passes through zero. Moreover, $  { \mathop{\rm dim} } {W  ^ {s} ( L _  \alpha  ) } = n _ {s} + 1 $
 +
if  $  \sigma _ {0} < 0 $,  
 +
and $  { \mathop{\rm dim} } {W  ^ {s} ( L _  \alpha  ) } = n _ {s} $
 +
if  $  \sigma _ {0} > 0 $.
  
(Saddle-focus) For any generic one-parameter system (a1) having a saddle-focus equilibrium point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024055.png" /> with a homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024056.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024057.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024058.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024059.png" /> such that one of the following alternatives holds:
+
(Saddle-focus) For any generic one-parameter system (a1) having a saddle-focus equilibrium point $  x _ {0} $
 +
with a homoclinic orbit $  \Gamma _ {0} $
 +
at $  \alpha = 0 $,  
 +
there exists a neighbourhood $  U _ {0} $
 +
of $  \Gamma _ {0} \cup x _ {0} $
 +
such that one of the following alternatives holds:
  
a) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024060.png" />, a unique limit cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024061.png" /> bifurcates from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024062.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024063.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024064.png" /> passes through zero, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024065.png" />;
+
a) if $  \sigma _ {0} < 0 $,  
 +
a unique limit cycle $  L _  \alpha  $
 +
bifurcates from $  \Gamma _ {0} $
 +
in $  U _ {0} $
 +
as $  \alpha $
 +
passes through zero, $  { \mathop{\rm dim} } {W  ^ {s} ( L _  \alpha  ) } = n _ {s} + 1 $;
  
b) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024066.png" />, the system has an infinite number of saddle limit cycles in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024067.png" /> for all sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024068.png" />.
+
b) if $  \sigma _ {0} > 0 $,  
 +
the system has an infinite number of saddle limit cycles in $  U _ {0} $
 +
for all sufficiently small $  | \alpha | $.
  
(Focus-focus) For any generic one-parameter system (a1) having a focus-focus equilibrium point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024069.png" /> with a homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024070.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024071.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024072.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024073.png" /> in which the system has an infinite number of saddle limit cycles in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024074.png" /> for all sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024075.png" />.
+
(Focus-focus) For any generic one-parameter system (a1) having a focus-focus equilibrium point $  x _ {0} $
 +
with a homoclinic orbit $  \Gamma _ {0} $
 +
at $  \alpha = 0 $,  
 +
there exists a neighbourhood $  U _ {0} $
 +
of $  \Gamma _ {0} \cup x _ {0} $
 +
in which the system has an infinite number of saddle limit cycles in $  U _ {0} $
 +
for all sufficiently small $  | \alpha | $.
  
 
The genericity conditions mentioned above have some common parts:
 
The genericity conditions mentioned above have some common parts:
  
1) the leading eigenspaces are either one- or two-dimensional and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024076.png" />;
+
1) the leading eigenspaces are either one- or two-dimensional and $  \sigma _ {0} \neq 0 $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024077.png" /> tends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024078.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024079.png" /> along the leading eigenspaces;
+
2) $  \Gamma _ {0} $
 +
tends to $  x _ {0} $
 +
as $  t \rightarrow \pm  \infty $
 +
along the leading eigenspaces;
  
3) the intersection of the tangent spaces to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024081.png" /> at each point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024082.png" /> is one-dimensional;
+
3) the intersection of the tangent spaces to $  W  ^ {s} ( x _ {0} ) $
 +
and $  W  ^ {u} ( x _ {0} ) $
 +
at each point on $  \Gamma _ {0} $
 +
is one-dimensional;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024084.png" /> split by an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024085.png" /> distance as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024086.png" /> moves away from zero, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024087.png" /> is the continuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024088.png" /> for small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024089.png" />.
+
4) $  W  ^ {s} ( x _  \alpha  ) $
 +
and $  W  ^ {u} ( x _  \alpha  ) $
 +
split by an $  O ( \alpha ) $
 +
distance as $  \alpha $
 +
moves away from zero, where $  x _  \alpha  $
 +
is the continuation of $  x _ {0} $
 +
for small $  | \alpha | > 0 $.
  
There is also a case-dependent non-degeneracy condition dealing with the global topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024091.png" /> around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024092.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024093.png" />. The exact formulation of this condition can be found in [[#References|[a2]]]. In the planar case (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024094.png" />), only conditions 1) and 4) are relevant.
+
There is also a case-dependent non-degeneracy condition dealing with the global topology of $  W  ^ {s} ( x _ {0} ) $
 +
and $  W  ^ {u} ( x _ {0} ) $
 +
around $  \Gamma _ {0} $
 +
at $  \alpha = 0 $.  
 +
The exact formulation of this condition can be found in [[#References|[a2]]]. In the planar case ( $  n = 2 $),  
 +
only conditions 1) and 4) are relevant.
  
Suppose now that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024095.png" /> is a non-hyperbolic equilibrium of (a1) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024096.png" />, having a homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024097.png" />. Only the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024098.png" /> has a simple zero eigenvalue and no other eigenvalues on the imaginary axis (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024099.png" /> is a saddle-node, cf. [[Saddle node|Saddle node]]) appears in generic one-parameter families (has codimension-one). If the saddle-node has a single homoclinic orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240100.png" />, then, generically, a unique [[Limit cycle|limit cycle]] bifurcates from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240101.png" />, when the saddle-node disappears via the fold bifurcation. The cycle can be either attracting/repelling or saddle type, depending on the location of the non-zero eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240102.png" /> on the complex plane. If the saddle-node has more than two homoclinic orbits, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240103.png" />, then, generically, infinitely many saddle limit cycles appear from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240104.png" />, when the equilibrium <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240105.png" /> disappears. The genericity conditions include the non-degeneracy of the underlying fold bifurcation, as well as the requirement that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240106.png" /> departs and returns to the saddle-node along the null-vector of the Jacobian matrix evaluated at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240107.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240108.png" />. The two-dimensional case has been treated in [[#References|[a1]]]. The cases with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h110240109.png" /> were considered by Shil'nikov [[#References|[a9]]], [[#References|[a12]]] and presented in [[#References|[a2]]], [[#References|[a5]]].
+
Suppose now that $  x _ {0} $
 +
is a non-hyperbolic equilibrium of (a1) at $  \alpha = 0 $,  
 +
having a homoclinic orbit $  \Gamma _ {0} $.  
 +
Only the case when $  x _ {0} $
 +
has a simple zero eigenvalue and no other eigenvalues on the imaginary axis (i.e., $  x _ {0} $
 +
is a saddle-node, cf. [[Saddle node|Saddle node]]) appears in generic one-parameter families (has codimension-one). If the saddle-node has a single homoclinic orbit $  \Gamma _ {0} $,  
 +
then, generically, a unique [[Limit cycle|limit cycle]] bifurcates from $  \Gamma _ {0} $,  
 +
when the saddle-node disappears via the fold bifurcation. The cycle can be either attracting/repelling or saddle type, depending on the location of the non-zero eigenvalues of $  x _ {0} $
 +
on the complex plane. If the saddle-node has more than two homoclinic orbits, $  \Gamma _ {1} \dots \Gamma _ {m} $,  
 +
then, generically, infinitely many saddle limit cycles appear from $  \Gamma _ {1} \cup \dots \cup \Gamma _ {m} $,  
 +
when the equilibrium $  x _ {0} $
 +
disappears. The genericity conditions include the non-degeneracy of the underlying fold bifurcation, as well as the requirement that $  \Gamma _ {0} $
 +
departs and returns to the saddle-node along the null-vector of the Jacobian matrix evaluated at $  x _ {0} $
 +
for $  \alpha = 0 $.  
 +
The two-dimensional case has been treated in [[#References|[a1]]]. The cases with $  n > 2 $
 +
were considered by Shil'nikov [[#References|[a9]]], [[#References|[a12]]] and presented in [[#References|[a2]]], [[#References|[a5]]].
  
 
In generic discrete-time dynamical systems defined by iterations of diffeomorphisms, orbits which are homoclinic to a hyperbolic fixed point persist under small parameter variations. Stable and unstable manifolds of the fixed point intersect transversally along the homoclinic orbits, implying the existence of the Poincaré homoclinic structure with infinitely many saddle periodic orbits [[#References|[a14]]], [[#References|[a7]]], [[#References|[a10]]], [[#References|[a8]]], [[#References|[a6]]]. The homoclinic structure appears/disappears via a non-transversal homoclinic bifurcation, when the stable and the unstable manifolds of the fixed point become tangent along the homoclinic orbit [[#References|[a3]]], [[#References|[a4]]], [[#References|[a16]]].
 
In generic discrete-time dynamical systems defined by iterations of diffeomorphisms, orbits which are homoclinic to a hyperbolic fixed point persist under small parameter variations. Stable and unstable manifolds of the fixed point intersect transversally along the homoclinic orbits, implying the existence of the Poincaré homoclinic structure with infinitely many saddle periodic orbits [[#References|[a14]]], [[#References|[a7]]], [[#References|[a10]]], [[#References|[a8]]], [[#References|[a6]]]. The homoclinic structure appears/disappears via a non-transversal homoclinic bifurcation, when the stable and the unstable manifolds of the fixed point become tangent along the homoclinic orbit [[#References|[a3]]], [[#References|[a4]]], [[#References|[a16]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Andronov,   E.A. Leontovich,   I.I. Gordon,   A.G. Maier,   "Theory of bifurcations of dynamical systems on a plane" , Israel Program Sci. Transl. (1971) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd,   V.S. Afraimovich,   Yu.S. Il'yashenko,   L.P. Shil'nikov,   "Bifurcation theory" V.I. Arnol'd (ed.) , ''Dynamical Systems V'' , ''Encycl. Math. Sci.'' , Springer (1994) (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.K. Gavrilov,   L.P. Shilnikov,   "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: I" ''Mat. USSR Sb.'' , '''17''' (1972) pp. 467–485 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N.K. Gavrilov,   L.P. Shilnikov,   "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: II" ''Mat. USSR Sb.'' , '''19''' (1973) pp. 139–156 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu.A. Kuznetsov,   "Elements of applied bifurcation theory" , Springer (1995)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Moser,   "Stable and random motions in dynamical systems" , Princeton Univ. Press (1973)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> Yu.I. Neimark,   "On motions close to a bi-asymptotic motion" ''Dokl. AKad. Nauk SSSR'' , '''142''' (1967) pp. 1021–1024 (In Russian)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> Z. Nitecki,   "Differentiable dynamics" , MIT (1971)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> L.P. Shil'nikov,   "On the generation of a periodic motion from a trajectory which leaves and re-enters a saddle-saddle state of equilibrium" ''Soviet Math. Dokl.'' , '''7''' (1966) pp. 1155–1158 (In Russian)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> L.P. Shil'nikov,   "On a Poincaré–Birkhoff problem" ''Mat. USSR Sb.'' , '''3''' (1967) pp. 353–371 (In Russian)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> L.P. Shil'nikov,   "On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type" ''Mat. USSR Sb.'' , '''6''' (1968) pp. 427–437 (In Russian)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> L.P. Shil'nikov,   "On a new type of bifurcation of multidimensional dynamical systems" ''Soviet Math. Dokl.'' , '''10''' (1969) pp. 1368–1371 (In Russian)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> L.P. Shil'nikov,   "A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type" ''Mat. USSR Sb.'' , '''10''' (1970) pp. 91–102 (In Russian)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> S. Smale,   "Differentiable dynamical systems" ''Bull. Amer. Math. Soc.'' , '''73''' (1967) pp. 747–817</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> S. Wiggins,   "Global bifurcations and chaos" , Springer (1988)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> S. Wiggins,   "Introduction to applied non-linear dynamical systems and chaos" , Springer (1990)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Theory of bifurcations of dynamical systems on a plane" , Israel Program Sci. Transl. (1971) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, V.S. Afraimovich, Yu.S. Il'yashenko, L.P. Shil'nikov, "Bifurcation theory" V.I. Arnol'd (ed.) , ''Dynamical Systems V'' , ''Encycl. Math. Sci.'' , Springer (1994) (In Russian) {{MR|}} {{ZBL|0791.00009}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.K. Gavrilov, L.P. Shilnikov, "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: I" ''Mat. USSR Sb.'' , '''17''' (1972) pp. 467–485 (In Russian) {{MR|}} {{ZBL|0255.58006}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N.K. Gavrilov, L.P. Shilnikov, "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: II" ''Mat. USSR Sb.'' , '''19''' (1973) pp. 139–156 (In Russian) {{MR|}} {{ZBL|0273.58009}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu.A. Kuznetsov, "Elements of applied bifurcation theory" , Springer (1995) {{MR|1344214}} {{ZBL|0829.58029}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Moser, "Stable and random motions in dynamical systems" , Princeton Univ. Press (1973) {{MR|0442980}} {{ZBL|0271.70009}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> Yu.I. Neimark, "On motions close to a bi-asymptotic motion" ''Dokl. AKad. Nauk SSSR'' , '''142''' (1967) pp. 1021–1024 (In Russian)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> Z. Nitecki, "Differentiable dynamics" , MIT (1971) {{MR|0649788}} {{ZBL|0246.58012}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> L.P. Shil'nikov, "On the generation of a periodic motion from a trajectory which leaves and re-enters a saddle-saddle state of equilibrium" ''Soviet Math. Dokl.'' , '''7''' (1966) pp. 1155–1158 (In Russian) {{MR|}} {{ZBL|0161.28802}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> L.P. Shil'nikov, "On a Poincaré–Birkhoff problem" ''Mat. USSR Sb.'' , '''3''' (1967) pp. 353–371 (In Russian)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> L.P. Shil'nikov, "On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type" ''Mat. USSR Sb.'' , '''6''' (1968) pp. 427–437 (In Russian)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> L.P. Shil'nikov, "On a new type of bifurcation of multidimensional dynamical systems" ''Soviet Math. Dokl.'' , '''10''' (1969) pp. 1368–1371 (In Russian) {{MR|}} {{ZBL|0219.34031}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> L.P. Shil'nikov, "A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type" ''Mat. USSR Sb.'' , '''10''' (1970) pp. 91–102 (In Russian) {{MR|}} {{ZBL|0216.11201}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> S. Smale, "Differentiable dynamical systems" ''Bull. Amer. Math. Soc.'' , '''73''' (1967) pp. 747–817 {{MR|0228014}} {{ZBL|0202.55202}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> S. Wiggins, "Global bifurcations and chaos" , Springer (1988) {{MR|0956468}} {{ZBL|0661.58001}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> S. Wiggins, "Introduction to applied non-linear dynamical systems and chaos" , Springer (1990) {{MR|1056699}} {{ZBL|}} </TD></TR></table>

Latest revision as of 22:10, 5 June 2020


Consider an autonomous system of ordinary differential equations depending on a parameter

$$ \tag{a1 } {\dot{x} } = f ( x, \alpha ) , \quad x \in \mathbf R ^ {n} , \alpha \in \mathbf R ^ {1} , $$

where $ f $ is smooth. Denote by $ \varphi _ \alpha ^ {t} $ the flow (continuous-time dynamical system) corresponding to (a1). Let $ x _ {0} $ be an equilibrium of the system at $ \alpha = 0 $. An orbit $ \Gamma _ {0} $ starting at a point $ x \in \mathbf R ^ {n} $ is called homoclinic to the equilibrium point $ x _ {0} $ of (a1) at $ \alpha = 0 $ if $ \varphi _ {0} x ^ {t} \rightarrow x _ {0} $ as $ t \rightarrow \pm \infty $. Generically, presence of a homoclinic orbit at $ \alpha = 0 $ implies a global codimension-one bifurcation of (a1), since the homoclinic orbit disappears for all sufficiently small $ | \alpha | > 0 $. Moreover, the disappearance of a homoclinic orbit leads to the creation or destruction of one (or more) limit cycle nearby. When such a cycle approaches the homoclinic orbit $ \Gamma _ {0} $ as $ | \alpha | \rightarrow 0 $, its period tends to infinity. In some cases, there are infinitely many limit cycles in a neighbourhood of $ \Gamma _ {0} $ for sufficiently small $ | \alpha | $, since the Poincaré return map near the homoclinic orbit demonstrates Smale's horseshoes [a14] and their associated shift dynamics.

First, consider the case when $ x _ {0} $ is an hyperbolic equilibrium, i.e. the Jacobian matrix $ A = f _ {x} ( x _ {0} ,0 ) $ has no eigenvalues on the imaginary axis. Suppose that $ A $ has $ n _ {u} $ eigenvalues with positive real part

$$ 0 < { \mathop{\rm Re} } \lambda _ {1} \leq \dots \leq { \mathop{\rm Re} } \lambda _ {n _ {u} } $$

and $ n _ {s} $ eigenvalues with negative real part

$$ { \mathop{\rm Re} } \mu _ {n _ {s} } \leq \dots \leq { \mathop{\rm Re} } \mu _ {1} < 0 $$

( $ n _ {s} + n _ {u} = n $). The equilibrium $ x _ {0} $ has unstable and stable invariant manifolds $ W ^ {u} ( x _ {0} ) $ and $ W ^ {s} ( x _ {0} ) $ composed by outgoing and incoming orbits, respectively; $ { \mathop{\rm dim} } {W ^ {u,s } ( x _ {0} ) } = n _ {u,s } $.

The eigenvalues with positive (negative) real part that are closest to the imaginary axis are called the unstable (stable) leading eigenvalues, while the corresponding eigenspaces are called the unstable (stable) leading eigenspaces. Almost all orbits on the stable and unstable manifolds tend to the equilibrium $ x _ {0} $ as $ t \rightarrow - \infty $( $ t \rightarrow + \infty $) along the corresponding leading eigenspace. Exceptional orbits form a non-leading manifold tangent to the eigenspace corresponding to the non-leading eigenvalues.

The saddle quantity $ \sigma _ {0} $ of a hyperbolic equilibrium is the sum of the real parts of its leading eigenvalues: $ \sigma _ {0} = { \mathop{\rm Re} } \lambda _ {1} + { \mathop{\rm Re} } \mu _ {1} $, where $ \lambda _ {1} $ is a leading unstable eigenvalue and $ \mu _ {1} $ is a leading stable eigenvalue. Generically, leading eigenspaces are either one- or two-dimensional. In the first case, an eigenspace corresponds to a simple real eigenvalue, while in the second case it corresponds to a simple pair of complex-conjugate eigenvalues. Reversing the time direction, if necessary, one has only three typical configurations of the leading eigenvalues:

a) (saddle) the leading eigenvalues are real and simple: $ \mu _ {1} < 0 < \lambda _ {1} $;

b) (saddle-focus) the stable leading eigenvalues are non-real and simple: $ \mu _ {1} = {\overline \mu \; } _ {2} $, $ { \mathop{\rm Re} } \mu _ {1,2 } < 0 $, while the unstable leading eigenvalue $ \lambda _ {1} > 0 $ is real and simple;

c) (focus-focus) the leading eigenvalues are non-real and simple:

$$ \lambda _ {1} = {\overline \lambda \; } _ {2} , \mu _ {1} = {\overline \mu \; } _ {2} , { \mathop{\rm Re} } \mu _ {1,2 } < 0 < { \mathop{\rm Re} } \lambda _ {1,2 } . $$

The following theorems by A.A. Andronov and E.A. Leontovich [a1] (in the saddle case when $ n = 2 $) and L.P. Shil'nikov (otherwise) [a11], [a13] are valid (see also [a15], [a2], [a5]).

(Saddle) For any generic one-parameter system (a1) having a saddle equilibrium point $ x _ {0} $ with a homoclinic orbit $ \Gamma _ {0} $ at $ \alpha = 0 $, there exists a neighbourhood $ U _ {0} $ of $ \Gamma _ {0} \cup x _ {0} $ in which a unique limit cycle $ L _ \alpha $ bifurcates from $ \Gamma _ {0} $ as $ \alpha $ passes through zero. Moreover, $ { \mathop{\rm dim} } {W ^ {s} ( L _ \alpha ) } = n _ {s} + 1 $ if $ \sigma _ {0} < 0 $, and $ { \mathop{\rm dim} } {W ^ {s} ( L _ \alpha ) } = n _ {s} $ if $ \sigma _ {0} > 0 $.

(Saddle-focus) For any generic one-parameter system (a1) having a saddle-focus equilibrium point $ x _ {0} $ with a homoclinic orbit $ \Gamma _ {0} $ at $ \alpha = 0 $, there exists a neighbourhood $ U _ {0} $ of $ \Gamma _ {0} \cup x _ {0} $ such that one of the following alternatives holds:

a) if $ \sigma _ {0} < 0 $, a unique limit cycle $ L _ \alpha $ bifurcates from $ \Gamma _ {0} $ in $ U _ {0} $ as $ \alpha $ passes through zero, $ { \mathop{\rm dim} } {W ^ {s} ( L _ \alpha ) } = n _ {s} + 1 $;

b) if $ \sigma _ {0} > 0 $, the system has an infinite number of saddle limit cycles in $ U _ {0} $ for all sufficiently small $ | \alpha | $.

(Focus-focus) For any generic one-parameter system (a1) having a focus-focus equilibrium point $ x _ {0} $ with a homoclinic orbit $ \Gamma _ {0} $ at $ \alpha = 0 $, there exists a neighbourhood $ U _ {0} $ of $ \Gamma _ {0} \cup x _ {0} $ in which the system has an infinite number of saddle limit cycles in $ U _ {0} $ for all sufficiently small $ | \alpha | $.

The genericity conditions mentioned above have some common parts:

1) the leading eigenspaces are either one- or two-dimensional and $ \sigma _ {0} \neq 0 $;

2) $ \Gamma _ {0} $ tends to $ x _ {0} $ as $ t \rightarrow \pm \infty $ along the leading eigenspaces;

3) the intersection of the tangent spaces to $ W ^ {s} ( x _ {0} ) $ and $ W ^ {u} ( x _ {0} ) $ at each point on $ \Gamma _ {0} $ is one-dimensional;

4) $ W ^ {s} ( x _ \alpha ) $ and $ W ^ {u} ( x _ \alpha ) $ split by an $ O ( \alpha ) $ distance as $ \alpha $ moves away from zero, where $ x _ \alpha $ is the continuation of $ x _ {0} $ for small $ | \alpha | > 0 $.

There is also a case-dependent non-degeneracy condition dealing with the global topology of $ W ^ {s} ( x _ {0} ) $ and $ W ^ {u} ( x _ {0} ) $ around $ \Gamma _ {0} $ at $ \alpha = 0 $. The exact formulation of this condition can be found in [a2]. In the planar case ( $ n = 2 $), only conditions 1) and 4) are relevant.

Suppose now that $ x _ {0} $ is a non-hyperbolic equilibrium of (a1) at $ \alpha = 0 $, having a homoclinic orbit $ \Gamma _ {0} $. Only the case when $ x _ {0} $ has a simple zero eigenvalue and no other eigenvalues on the imaginary axis (i.e., $ x _ {0} $ is a saddle-node, cf. Saddle node) appears in generic one-parameter families (has codimension-one). If the saddle-node has a single homoclinic orbit $ \Gamma _ {0} $, then, generically, a unique limit cycle bifurcates from $ \Gamma _ {0} $, when the saddle-node disappears via the fold bifurcation. The cycle can be either attracting/repelling or saddle type, depending on the location of the non-zero eigenvalues of $ x _ {0} $ on the complex plane. If the saddle-node has more than two homoclinic orbits, $ \Gamma _ {1} \dots \Gamma _ {m} $, then, generically, infinitely many saddle limit cycles appear from $ \Gamma _ {1} \cup \dots \cup \Gamma _ {m} $, when the equilibrium $ x _ {0} $ disappears. The genericity conditions include the non-degeneracy of the underlying fold bifurcation, as well as the requirement that $ \Gamma _ {0} $ departs and returns to the saddle-node along the null-vector of the Jacobian matrix evaluated at $ x _ {0} $ for $ \alpha = 0 $. The two-dimensional case has been treated in [a1]. The cases with $ n > 2 $ were considered by Shil'nikov [a9], [a12] and presented in [a2], [a5].

In generic discrete-time dynamical systems defined by iterations of diffeomorphisms, orbits which are homoclinic to a hyperbolic fixed point persist under small parameter variations. Stable and unstable manifolds of the fixed point intersect transversally along the homoclinic orbits, implying the existence of the Poincaré homoclinic structure with infinitely many saddle periodic orbits [a14], [a7], [a10], [a8], [a6]. The homoclinic structure appears/disappears via a non-transversal homoclinic bifurcation, when the stable and the unstable manifolds of the fixed point become tangent along the homoclinic orbit [a3], [a4], [a16].

References

[a1] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Theory of bifurcations of dynamical systems on a plane" , Israel Program Sci. Transl. (1971) (In Russian)
[a2] V.I. Arnol'd, V.S. Afraimovich, Yu.S. Il'yashenko, L.P. Shil'nikov, "Bifurcation theory" V.I. Arnol'd (ed.) , Dynamical Systems V , Encycl. Math. Sci. , Springer (1994) (In Russian) Zbl 0791.00009
[a3] N.K. Gavrilov, L.P. Shilnikov, "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: I" Mat. USSR Sb. , 17 (1972) pp. 467–485 (In Russian) Zbl 0255.58006
[a4] N.K. Gavrilov, L.P. Shilnikov, "On three-dimensional systems close to systems with a structurally unstable homoclinic curve: II" Mat. USSR Sb. , 19 (1973) pp. 139–156 (In Russian) Zbl 0273.58009
[a5] Yu.A. Kuznetsov, "Elements of applied bifurcation theory" , Springer (1995) MR1344214 Zbl 0829.58029
[a6] J. Moser, "Stable and random motions in dynamical systems" , Princeton Univ. Press (1973) MR0442980 Zbl 0271.70009
[a7] Yu.I. Neimark, "On motions close to a bi-asymptotic motion" Dokl. AKad. Nauk SSSR , 142 (1967) pp. 1021–1024 (In Russian)
[a8] Z. Nitecki, "Differentiable dynamics" , MIT (1971) MR0649788 Zbl 0246.58012
[a9] L.P. Shil'nikov, "On the generation of a periodic motion from a trajectory which leaves and re-enters a saddle-saddle state of equilibrium" Soviet Math. Dokl. , 7 (1966) pp. 1155–1158 (In Russian) Zbl 0161.28802
[a10] L.P. Shil'nikov, "On a Poincaré–Birkhoff problem" Mat. USSR Sb. , 3 (1967) pp. 353–371 (In Russian)
[a11] L.P. Shil'nikov, "On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type" Mat. USSR Sb. , 6 (1968) pp. 427–437 (In Russian)
[a12] L.P. Shil'nikov, "On a new type of bifurcation of multidimensional dynamical systems" Soviet Math. Dokl. , 10 (1969) pp. 1368–1371 (In Russian) Zbl 0219.34031
[a13] L.P. Shil'nikov, "A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type" Mat. USSR Sb. , 10 (1970) pp. 91–102 (In Russian) Zbl 0216.11201
[a14] S. Smale, "Differentiable dynamical systems" Bull. Amer. Math. Soc. , 73 (1967) pp. 747–817 MR0228014 Zbl 0202.55202
[a15] S. Wiggins, "Global bifurcations and chaos" , Springer (1988) MR0956468 Zbl 0661.58001
[a16] S. Wiggins, "Introduction to applied non-linear dynamical systems and chaos" , Springer (1990) MR1056699
How to Cite This Entry:
Homoclinic bifurcations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homoclinic_bifurcations&oldid=18200
This article was adapted from an original article by Yu.A. Kuznetsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article