Namespaces
Variants
Actions

Difference between revisions of "Holomorphy, criteria for"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m (AUTOMATIC EDIT (latexlist): Replaced 59 formulas out of 59 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 59 formulas, 59 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''criteria for analyticity''
 
''criteria for analyticity''
  
The natural criteria for holomorphy (analyticity) of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201101.png" /> (or continuous) function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201102.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201103.png" /> of the complex plane are  "infinitesimal"  (cf. [[Analytic function|Analytic function]]), namely: power series expansions, the [[Cauchy-Riemann equations]], and even the [[Morera theorem|Morera theorem]], since it states that
+
The natural criteria for holomorphy (analyticity) of a $C ^ { 1 }$ (or continuous) function $f$ in a domain $\Omega$ of the complex plane are  "infinitesimal"  (cf. [[Analytic function|Analytic function]]), namely: power series expansions, the [[Cauchy-Riemann equations]], and even the [[Morera theorem|Morera theorem]], since it states that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201104.png" /></td> </tr></table>
+
\begin{equation*} \int _ { \Gamma } f ( z ) d z = 0 \end{equation*}
  
for all Jordan curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201105.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201106.png" />, is a necessary and sufficient condition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201107.png" /> being analytic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201108.png" />. The condition (and the usual proofs) depend on the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201109.png" /> can be taken to be arbitrarily small.
+
for all Jordan curves $\Gamma$ such that $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$, is a necessary and sufficient condition for $f$ being analytic in $\Omega$. The condition (and the usual proofs) depend on the fact that $\Gamma$ can be taken to be arbitrarily small.
  
The first  "non-infinitesimal"  condition is due to M. Agranovsky and R.E. Val'skii (see [[#References|[a2]]] and [[#References|[a6]]] for all relevant references): Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011010.png" /> be a piecewise smooth Jordan curve, then a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011011.png" /> continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011012.png" /> is entire (analytic everywhere) if and only if for every transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011014.png" /> it satisfies
+
The first  "non-infinitesimal"  condition is due to M. Agranovsky and R.E. Val'skii (see [[#References|[a2]]] and [[#References|[a6]]] for all relevant references): Let $\gamma$ be a piecewise smooth Jordan curve, then a function $f$ continuous in $\mathbf{C}$ is entire (analytic everywhere) if and only if for every transformation $\sigma \in M ( 2 )$ and $k = 0,1,2 , \dots$ it satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011015.png" /></td> </tr></table>
+
\begin{equation*} \int _ { \sigma ( \gamma ) } f ( z ) d z = 0. \end{equation*}
  
(Recall that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011016.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011019.png" />.)
+
(Recall that $\sigma \in M ( 2 )$ means that $\sigma ( z ) = e ^ { i \theta } z + a$, $\theta \in \mathbf{R}$, $a \in \mathbf{C}$.)
  
 
A generalization of this theorem and of Morera's theorem which is both local and non-infinitesimal is the following Berenstein–Gay theorem [[#References|[a3]]].
 
A generalization of this theorem and of Morera's theorem which is both local and non-infinitesimal is the following Berenstein–Gay theorem [[#References|[a3]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011020.png" /> be a Jordan polygon contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011022.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011023.png" /> is analytic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011024.png" /> if and only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011025.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011026.png" />,
+
Let $\Gamma$ be a Jordan polygon contained in $B ( 0 , r / 2 )$ and $f \in C ( B ( 0 , r ) )$; then $f$ is analytic in $B ( 0 , r )$ if and only if for any $\sigma \in M ( 2 )$ such that $\sigma ( \Gamma ) \subseteq B ( 0 , r )$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011027.png" /></td> </tr></table>
+
\begin{equation*} \int _ { \sigma ( \Gamma ) } f ( z ) d z = 0. \end{equation*}
  
 
This theorem can be extended to several complex variables and other geometries (see [[#References|[a2]]], [[#References|[a5]]], and [[#References|[a6]]] for references).
 
This theorem can be extended to several complex variables and other geometries (see [[#References|[a2]]], [[#References|[a5]]], and [[#References|[a6]]] for references).
  
A different kind of conditions for holomorphy occur when one considers the problem of extending a [[Continuous function|continuous function]] defined on a curve in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011028.png" /> (or in a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011029.png" />-manifold in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011030.png" />) to an analytic function defined in a domain that contains the curve (or hypersurface) on its boundary. This is sometimes called a CR extension. An example of this type, generalizing the moment conditions of the Berenstein–Gay theorem, appears in the work of L. Aizenberg and collaborators (cf. also [[Analytic continuation into a domain of a function given on part of the boundary|Analytic continuation into a domain of a function given on part of the boundary]]; [[Carleman formulas|Carleman formulas]]): Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011031.png" /> be a subdomain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011032.png" />, bounded by an arc of the unit circle and a smooth simple curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011033.png" /> and assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011034.png" />. Then there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011035.png" />, holomorphic inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011036.png" /> and continuous on its closure, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011037.png" /> if and only if
+
A different kind of conditions for holomorphy occur when one considers the problem of extending a [[Continuous function|continuous function]] defined on a curve in $\mathbf{C}$ (or in a real $( 2 n - 1 )$-manifold in $\mathbf{C} ^ { n }$) to an analytic function defined in a domain that contains the curve (or hypersurface) on its boundary. This is sometimes called a CR extension. An example of this type, generalizing the moment conditions of the Berenstein–Gay theorem, appears in the work of L. Aizenberg and collaborators (cf. also [[Analytic continuation into a domain of a function given on part of the boundary|Analytic continuation into a domain of a function given on part of the boundary]]; [[Carleman formulas|Carleman formulas]]): Let $D$ be a subdomain of $B ( 0,1 ) \subseteq \mathbf C$, bounded by an arc of the unit circle and a smooth simple curve $\Gamma \subseteq B ( 0,1 )$ and assume that $f \in C ( \Gamma )$. Then there is a function $F$, holomorphic inside $D$ and continuous on its closure, such that $F | _ { \Gamma } = f$ if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011038.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { limsup } _ { k \rightarrow \infty } \left| \int _ { \Gamma } \frac { f ( \xi ) } { \xi ^ { k + 1 } } d \xi \right| ^ { 1 / k } \leq 1. \end{equation*}
  
A boundary version of the Berenstein–Gay theorem can be proven when regarding the Heisenberg group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011039.png" /> (cf. also [[Nil manifold|Nil manifold]]) as the boundary of the Siegel upper half-space
+
A boundary version of the Berenstein–Gay theorem can be proven when regarding the Heisenberg group $H ^ { n }$ (cf. also [[Nil manifold|Nil manifold]]) as the boundary of the Siegel upper half-space
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011040.png" /></td> </tr></table>
+
\begin{equation*} S _ { n + 1 } = \left\{ z \in \mathbf{C} ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } &gt; \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\}, \end{equation*}
  
but the boundary values are restricted to be in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011042.png" />, [[#References|[a1]]]. Related analytic extension theorems from continuous boundary values have been proven by J. Globevnik and E.L. Stout, E. Grinberg, W. Rudin, and others (see [[#References|[a2]]] for references) in the bounded  "version"  of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011043.png" />, namely the unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011044.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011045.png" />, or, more generally, for bounded domains, by essentially considering extensions from the boundary to complex subspaces. An example is the following Globevnik–Stout theorem, [[#References|[a4]]].
+
but the boundary values are restricted to be in $L ^ { p } ( H ^ { n } )$, $1 \leq p \leq \infty$, [[#References|[a1]]]. Related analytic extension theorems from continuous boundary values have been proven by J. Globevnik and E.L. Stout, E. Grinberg, W. Rudin, and others (see [[#References|[a2]]] for references) in the bounded  "version"  of $H ^ { n }$, namely the unit ball $B$ of $\mathbf{C} ^ { n  + 1}$, or, more generally, for bounded domains, by essentially considering extensions from the boundary to complex subspaces. An example is the following Globevnik–Stout theorem, [[#References|[a4]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011046.png" /> be a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011047.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011048.png" /> boundary. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011049.png" /> and assume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011050.png" /> is such that
+
Let $\Omega$ be a bounded domain in $\mathbf{C} ^ { n  + 1}$ with $C ^ { 2 }$ boundary. Let $1 \leq k \leq n$ and assume $f \in C ( \partial \Omega )$ is such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011051.png" /></td> </tr></table>
+
\begin{equation*} \int _ { \Lambda \bigcap \partial \Omega} f \beta = 0 \end{equation*}
  
for all complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011052.png" />-planes intersecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011053.png" /> transversally, and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011054.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011055.png" /> with constant coefficients. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011056.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011058.png" />-function, i.e. has an extension as an analytic function to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011059.png" />.
+
for all complex $k$-planes intersecting $\partial \Omega$ transversally, and all $( k , k - 1 )$-forms $\beta$ with constant coefficients. Then $f$ is a $C R$-function, i.e. has an extension as an analytic function to $\Omega$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Agranovsky,  C. Berenstein,  D.C. Chang,  "Morera theorem for holomorphic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011060.png" /> functions in the Heisenberg group"  ''J. Reine Angew. Math.'' , '''443'''  (1993)  pp. 49–89</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Berenstein,  D.C. Chang,  D. Pascuas,  L. Zalcman,  "Variations on the theorem of Morera"  ''Contemp. Math.'' , '''137'''  (1992)  pp. 63–78</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. Berenstein,  R. Gay,  "Le probléme de Pompeiu local"  ''J. Anal. Math.'' , '''52'''  (1988)  pp. 133–166</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Globevnik,  E.L. Stout,  "Boundary Morera theorems for holomorphic functions of several complex variables"  ''Duke Math. J.'' , '''64'''  (1991)  pp. 571–615</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Zalcman,  "Offbeat integral geometry"  ''Amer. Math. Monthly'' , '''87'''  (1980)  pp. 161–175</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  L. Zalcman,  "A bibliographic survey of the Pompeiu problem"  B. Fuglede (ed.)  et al. (ed.) , ''Approximation by Solutions of Partial Differential equations'' , Kluwer Acad. Publ.  (1992)  pp. 185–194</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  M. Agranovsky,  C. Berenstein,  D.C. Chang,  "Morera theorem for holomorphic $H _ { p }$ functions in the Heisenberg group"  ''J. Reine Angew. Math.'' , '''443'''  (1993)  pp. 49–89</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  C. Berenstein,  D.C. Chang,  D. Pascuas,  L. Zalcman,  "Variations on the theorem of Morera"  ''Contemp. Math.'' , '''137'''  (1992)  pp. 63–78</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  C. Berenstein,  R. Gay,  "Le probléme de Pompeiu local"  ''J. Anal. Math.'' , '''52'''  (1988)  pp. 133–166</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  J. Globevnik,  E.L. Stout,  "Boundary Morera theorems for holomorphic functions of several complex variables"  ''Duke Math. J.'' , '''64'''  (1991)  pp. 571–615</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  L. Zalcman,  "Offbeat integral geometry"  ''Amer. Math. Monthly'' , '''87'''  (1980)  pp. 161–175</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  L. Zalcman,  "A bibliographic survey of the Pompeiu problem"  B. Fuglede (ed.)  et al. (ed.) , ''Approximation by Solutions of Partial Differential equations'' , Kluwer Acad. Publ.  (1992)  pp. 185–194</td></tr></table>

Latest revision as of 16:45, 1 July 2020

criteria for analyticity

The natural criteria for holomorphy (analyticity) of a $C ^ { 1 }$ (or continuous) function $f$ in a domain $\Omega$ of the complex plane are "infinitesimal" (cf. Analytic function), namely: power series expansions, the Cauchy-Riemann equations, and even the Morera theorem, since it states that

\begin{equation*} \int _ { \Gamma } f ( z ) d z = 0 \end{equation*}

for all Jordan curves $\Gamma$ such that $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$, is a necessary and sufficient condition for $f$ being analytic in $\Omega$. The condition (and the usual proofs) depend on the fact that $\Gamma$ can be taken to be arbitrarily small.

The first "non-infinitesimal" condition is due to M. Agranovsky and R.E. Val'skii (see [a2] and [a6] for all relevant references): Let $\gamma$ be a piecewise smooth Jordan curve, then a function $f$ continuous in $\mathbf{C}$ is entire (analytic everywhere) if and only if for every transformation $\sigma \in M ( 2 )$ and $k = 0,1,2 , \dots$ it satisfies

\begin{equation*} \int _ { \sigma ( \gamma ) } f ( z ) d z = 0. \end{equation*}

(Recall that $\sigma \in M ( 2 )$ means that $\sigma ( z ) = e ^ { i \theta } z + a$, $\theta \in \mathbf{R}$, $a \in \mathbf{C}$.)

A generalization of this theorem and of Morera's theorem which is both local and non-infinitesimal is the following Berenstein–Gay theorem [a3].

Let $\Gamma$ be a Jordan polygon contained in $B ( 0 , r / 2 )$ and $f \in C ( B ( 0 , r ) )$; then $f$ is analytic in $B ( 0 , r )$ if and only if for any $\sigma \in M ( 2 )$ such that $\sigma ( \Gamma ) \subseteq B ( 0 , r )$,

\begin{equation*} \int _ { \sigma ( \Gamma ) } f ( z ) d z = 0. \end{equation*}

This theorem can be extended to several complex variables and other geometries (see [a2], [a5], and [a6] for references).

A different kind of conditions for holomorphy occur when one considers the problem of extending a continuous function defined on a curve in $\mathbf{C}$ (or in a real $( 2 n - 1 )$-manifold in $\mathbf{C} ^ { n }$) to an analytic function defined in a domain that contains the curve (or hypersurface) on its boundary. This is sometimes called a CR extension. An example of this type, generalizing the moment conditions of the Berenstein–Gay theorem, appears in the work of L. Aizenberg and collaborators (cf. also Analytic continuation into a domain of a function given on part of the boundary; Carleman formulas): Let $D$ be a subdomain of $B ( 0,1 ) \subseteq \mathbf C$, bounded by an arc of the unit circle and a smooth simple curve $\Gamma \subseteq B ( 0,1 )$ and assume that $f \in C ( \Gamma )$. Then there is a function $F$, holomorphic inside $D$ and continuous on its closure, such that $F | _ { \Gamma } = f$ if and only if

\begin{equation*} \operatorname { limsup } _ { k \rightarrow \infty } \left| \int _ { \Gamma } \frac { f ( \xi ) } { \xi ^ { k + 1 } } d \xi \right| ^ { 1 / k } \leq 1. \end{equation*}

A boundary version of the Berenstein–Gay theorem can be proven when regarding the Heisenberg group $H ^ { n }$ (cf. also Nil manifold) as the boundary of the Siegel upper half-space

\begin{equation*} S _ { n + 1 } = \left\{ z \in \mathbf{C} ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\}, \end{equation*}

but the boundary values are restricted to be in $L ^ { p } ( H ^ { n } )$, $1 \leq p \leq \infty$, [a1]. Related analytic extension theorems from continuous boundary values have been proven by J. Globevnik and E.L. Stout, E. Grinberg, W. Rudin, and others (see [a2] for references) in the bounded "version" of $H ^ { n }$, namely the unit ball $B$ of $\mathbf{C} ^ { n + 1}$, or, more generally, for bounded domains, by essentially considering extensions from the boundary to complex subspaces. An example is the following Globevnik–Stout theorem, [a4].

Let $\Omega$ be a bounded domain in $\mathbf{C} ^ { n + 1}$ with $C ^ { 2 }$ boundary. Let $1 \leq k \leq n$ and assume $f \in C ( \partial \Omega )$ is such that

\begin{equation*} \int _ { \Lambda \bigcap \partial \Omega} f \beta = 0 \end{equation*}

for all complex $k$-planes intersecting $\partial \Omega$ transversally, and all $( k , k - 1 )$-forms $\beta$ with constant coefficients. Then $f$ is a $C R$-function, i.e. has an extension as an analytic function to $\Omega$.

References

[a1] M. Agranovsky, C. Berenstein, D.C. Chang, "Morera theorem for holomorphic $H _ { p }$ functions in the Heisenberg group" J. Reine Angew. Math. , 443 (1993) pp. 49–89
[a2] C. Berenstein, D.C. Chang, D. Pascuas, L. Zalcman, "Variations on the theorem of Morera" Contemp. Math. , 137 (1992) pp. 63–78
[a3] C. Berenstein, R. Gay, "Le probléme de Pompeiu local" J. Anal. Math. , 52 (1988) pp. 133–166
[a4] J. Globevnik, E.L. Stout, "Boundary Morera theorems for holomorphic functions of several complex variables" Duke Math. J. , 64 (1991) pp. 571–615
[a5] L. Zalcman, "Offbeat integral geometry" Amer. Math. Monthly , 87 (1980) pp. 161–175
[a6] L. Zalcman, "A bibliographic survey of the Pompeiu problem" B. Fuglede (ed.) et al. (ed.) , Approximation by Solutions of Partial Differential equations , Kluwer Acad. Publ. (1992) pp. 185–194
How to Cite This Entry:
Holomorphy, criteria for. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Holomorphy,_criteria_for&oldid=31195
This article was adapted from an original article by Carlos A. Berenstein (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article