Namespaces
Variants
Actions

Holley inequality

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 05A20 [MSN][ZBL]

An inequality for a finite distributive lattice $(\Gamma,{\prec})$, saying that if $\mu_1$ and $\mu_2$ map $\Gamma$ into $(0,\infty)$ and satisfy $\sum_\Gamma \mu_1(a) = \sum_\Gamma \mu_2(a)$ and $$ \mu_1(a) \mu_2(b) \le \mu_1(a \vee v) \mu_2(a \wedge b) $$ for all $a,b \in \Gamma$, then $$ \sum_\Gamma f(a) \mu_1(a) \ge \sum_\Gamma f(a) \mu_2(a) $$ for every $f : \Gamma \rightarrow \mathbf{R}$ that is non-decreasing in the sense that $a \prec b$ implies $f(a) \le f(b)$. It is due to R. Holley [a4] and was motivated by the related FKG inequality [a3]. It is an easy corollary [a2] of the more powerful Ahlswede–Daykin inequality [a1].

See also Correlation inequalities; Fishburn–Shepp inequality.

References

[a1] R. Ahlswede, D.E. Daykin, "An inequality for the weights of two families, their unions and intersections" Z. Wahrscheinlichkeitsth. verw. Gebiete , 43 (1978) pp. 183–185
[a2] P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191
[a3] C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103
[a4] R. Holley, "Remarks on the FKG inequalities" Comm. Math. Phys. , 36 (1974) pp. 227–231
How to Cite This Entry:
Holley inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Holley_inequality&oldid=40022
This article was adapted from an original article by P.C. Fishburn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article