Namespaces
Variants
Actions

Hilbert singular integral

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The improper integral (in the sense of the Cauchy principal value)

$$ \widetilde{f} ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) \mathop{\rm cotan} \frac{x - t }{2 } dt, $$

where the periodic function $ f $ is called the density of the Hilbert singular integral, while $ \mathop{\rm cotan} \{ {( x - t)/2 } \} $ is called its kernel. If $ f $ is summable, $ \widetilde{f} $ exists almost-everywhere; if $ f $ satisfies the Lipschitz condition of order $ \alpha $, $ 0 < \alpha < 1 $, $ \widetilde{f} $ exists for any $ x $ and satisfies this condition as well. If $ f $ has summable $ p $- th power, $ p > 1 $, $ \widetilde{f} $ has the same property, and

$$ \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | \widetilde{f} ( x) | ^ {p} dx \right \} ^ {1/p} \leq M _ {p} \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | f ( x) | ^ {p} dx \right \} ^ {1/p} , $$

where $ M _ {p} $ is a constant independent of $ f $. In addition, the inversion formula of Hilbert's singular integral,

$$ f ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } \widetilde{f} ( t) \mathop{\rm cotan} \frac{t - x }{2 } dt + { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) dt , $$

is valid. The function $ \widetilde{f} $ is said to be conjugate with $ f $.

References

[1] D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)
[2] M. Riesz, "Sur les fonctions conjugées" Math. Z. , 27 (1927) pp. 218–244
[3] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[4] N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)

Comments

See also Hilbert kernel; Hilbert transform.

References

[a1] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
[a2] B.L. Moiseiwitsch, "Integral equations" , Longman (1977)
How to Cite This Entry:
Hilbert singular integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_singular_integral&oldid=47232
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article