Namespaces
Variants
Actions

Difference between revisions of "Hilbert singular integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
h0473701.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/H047/H.0407370 Hilbert singular integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The improper integral (in the sense of the Cauchy principal value)
 
The improper integral (in the sense of the Cauchy principal value)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473701.png" /></td> </tr></table>
+
$$
 +
\widetilde{f}  ( x)  = \
 +
{
 +
\frac{1}{2 \pi }
 +
}
 +
\int\limits _ { 0 } ^ { {2 }  \pi }
 +
f ( t)  \mathop{\rm cotan} 
 +
\frac{x - t }{2 }
 +
  dt,
 +
$$
  
where the periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473702.png" /> is called the density of the Hilbert singular integral, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473703.png" /> is called its kernel. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473704.png" /> is summable, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473705.png" /> exists almost-everywhere; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473706.png" /> satisfies the Lipschitz condition of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473707.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473708.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h0473709.png" /> exists for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737010.png" /> and satisfies this condition as well. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737011.png" /> has summable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737012.png" />-th power, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737014.png" /> has the same property, and
+
where the periodic function $  f $
 +
is called the density of the Hilbert singular integral, while $  \mathop{\rm cotan} \{ {( x - t)/2 } \} $
 +
is called its kernel. If $  f $
 +
is summable, $  \widetilde{f}  $
 +
exists almost-everywhere; if $  f $
 +
satisfies the Lipschitz condition of order $  \alpha $,
 +
$  0 < \alpha < 1 $,  
 +
$  \widetilde{f}  $
 +
exists for any $  x $
 +
and satisfies this condition as well. If $  f $
 +
has summable $  p $-
 +
th power, $  p > 1 $,  
 +
$  \widetilde{f}  $
 +
has the same property, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737015.png" /></td> </tr></table>
+
$$
 +
\left \{ \int\limits _ { 0 } ^ { {2 }  \pi }
 +
| \widetilde{f}  ( x) |  ^ {p}  dx \right \}  ^ {1/p}  \leq  M _ {p} \left \{ \int\limits _ { 0 } ^ { {2 }  \pi }
 +
| f ( x) |  ^ {p}  dx \right \}  ^ {1/p} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737016.png" /> is a constant independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737017.png" />. In addition, the inversion formula of Hilbert's singular integral,
+
where $  M _ {p} $
 +
is a constant independent of $  f $.  
 +
In addition, the inversion formula of Hilbert's singular integral,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737018.png" /></td> </tr></table>
+
$$
 +
f ( x)  = \
 +
{
 +
\frac{1}{2 \pi }
 +
}
 +
\int\limits _ { 0 } ^ { {2 }  \pi }
 +
\widetilde{f}  ( t)  \mathop{\rm cotan} 
 +
\frac{t - x }{2 }
 +
  dt +
 +
{
 +
\frac{1}{2 \pi }
 +
}
 +
\int\limits _ { 0 } ^ { {2 }  \pi } f ( t)  dt ,
 +
$$
  
is valid. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737019.png" /> is said to be conjugate with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047370/h04737020.png" />.
+
is valid. The function $  \widetilde{f}  $
 +
is said to be conjugate with $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Riesz,  "Sur les fonctions conjugées"  ''Math. Z.'' , '''27'''  (1927)  pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Singular integral equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Riesz,  "Sur les fonctions conjugées"  ''Math. Z.'' , '''27'''  (1927)  pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Singular integral equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:10, 5 June 2020


The improper integral (in the sense of the Cauchy principal value)

$$ \widetilde{f} ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) \mathop{\rm cotan} \frac{x - t }{2 } dt, $$

where the periodic function $ f $ is called the density of the Hilbert singular integral, while $ \mathop{\rm cotan} \{ {( x - t)/2 } \} $ is called its kernel. If $ f $ is summable, $ \widetilde{f} $ exists almost-everywhere; if $ f $ satisfies the Lipschitz condition of order $ \alpha $, $ 0 < \alpha < 1 $, $ \widetilde{f} $ exists for any $ x $ and satisfies this condition as well. If $ f $ has summable $ p $- th power, $ p > 1 $, $ \widetilde{f} $ has the same property, and

$$ \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | \widetilde{f} ( x) | ^ {p} dx \right \} ^ {1/p} \leq M _ {p} \left \{ \int\limits _ { 0 } ^ { {2 } \pi } | f ( x) | ^ {p} dx \right \} ^ {1/p} , $$

where $ M _ {p} $ is a constant independent of $ f $. In addition, the inversion formula of Hilbert's singular integral,

$$ f ( x) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } \widetilde{f} ( t) \mathop{\rm cotan} \frac{t - x }{2 } dt + { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } f ( t) dt , $$

is valid. The function $ \widetilde{f} $ is said to be conjugate with $ f $.

References

[1] D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)
[2] M. Riesz, "Sur les fonctions conjugées" Math. Z. , 27 (1927) pp. 218–244
[3] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[4] N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)

Comments

See also Hilbert kernel; Hilbert transform.

References

[a1] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
[a2] B.L. Moiseiwitsch, "Integral equations" , Longman (1977)
How to Cite This Entry:
Hilbert singular integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_singular_integral&oldid=11933
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article