Namespaces
Variants
Actions

Difference between revisions of "Hermitian metric"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A Hermitian metric on a complex vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470801.png" /> is a positive-definite [[Hermitian form|Hermitian form]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470802.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470803.png" /> endowed with a Hermitian metric is called a unitary (or complex-Euclidean or Hermitian) vector space, and the Hermitian metric on it is called a Hermitian scalar product. Any two Hermitian metrics on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470804.png" /> can be transferred into each other by an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470805.png" />. Thus, the set of all Hermitian metrics on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470806.png" /> is a homogeneous space for the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470807.png" /> and can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470808.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h0470809.png" />.
+
<!--
 +
h0470801.png
 +
$#A+1 = 62 n = 0
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/H047/H.0407080 Hermitian metric
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A complex vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708010.png" /> can be viewed as a real vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708011.png" /> endowed with the operator defined by the complex structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708013.png" /> is a Hermitian metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708014.png" />, then the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708015.png" /> is a Euclidean metric (a scalar product) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708017.png" /> is a non-degenerate skew-symmetric bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708018.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708021.png" />. Any of the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708023.png" /> determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708024.png" /> uniquely.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A Hermitian metric on a complex vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708025.png" /> is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708026.png" /> on the base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708027.png" /> that associates with a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708028.png" /> a Hermitian metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708029.png" /> in the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708031.png" /> and that satisfies the following smoothness condition: For any smooth local sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708034.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708035.png" /> is smooth.
+
A Hermitian metric on a complex vector space  $  V $
 +
is a positive-definite [[Hermitian form|Hermitian form]] on $  V $.  
 +
The space  $  V $
 +
endowed with a Hermitian metric is called a unitary (or complex-Euclidean or Hermitian) vector space, and the Hermitian metric on it is called a Hermitian scalar product. Any two Hermitian metrics on  $  V $
 +
can be transferred into each other by an automorphism of  $  V $.  
 +
Thus, the set of all Hermitian metrics on  $  V $
 +
is a homogeneous space for the group  $  \mathop{\rm GL} _ {n} ( \mathbf C ) $
 +
and can be identified with  $  \mathop{\rm GL} _ {n} ( \mathbf C ) / U ( n) $,
 +
where  $  n = \mathop{\rm dim}  V $.
  
Every complex vector bundle has a Hermitian metric. A [[Connection|connection]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708036.png" /> on a complex vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708037.png" /> is said to be compatible with a Hermitian metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708038.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708039.png" /> and the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708040.png" /> defined by the complex structure in the fibres of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708041.png" /> are parallel with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708042.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708043.png" />), in other words, if the corresponding parallel displacement of the fibres of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708044.png" /> along curves on the base is an isometry of the fibres as unitary spaces. For every Hermitian metric there is a connection compatible with it, but the latter is, generally speaking, not unique. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708045.png" /> is a holomorphic vector bundle over a complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708046.png" /> (see [[Vector bundle, analytic|Vector bundle, analytic]]), there is a unique connection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708047.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708048.png" /> that is compatible with a given Hermitian metric and that satisfies the following condition: The covariant derivative of any holomorphic section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708049.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708050.png" /> relative to any anti-holomorphic complex vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708051.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708052.png" /> vanishes (the canonical Hermitian connection). The [[Curvature|curvature]] form of this connection can be regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708053.png" />-form of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708054.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708055.png" /> with values in the bundle of endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708056.png" />. The canonical connection can also be viewed as a connection on the principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708057.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708058.png" /> associated with the holomorphic vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708059.png" /> of complex dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708060.png" />. It can be characterized as the only connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708061.png" /> with complex horizontal subspaces in the tangent spaces of the complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708062.png" />.
+
A complex vector space  $  V $
 +
can be viewed as a real vector space  $  V  ^ {\mathbf R} $
 +
endowed with the operator defined by the complex structure  $  J ( x) = ix $.
 +
If  $  h $
 +
is a Hermitian metric on  $  V $,
 +
then the form  $  g =  \mathop{\rm Re}  h $
 +
is a Euclidean metric (a scalar product) on  $  V $
 +
and  $  \omega =  \mathop{\rm Im}  h $
 +
is a non-degenerate skew-symmetric bilinear form on  $  V $.
 +
Here  $  g ( Jx, Jy ) = g ( x , y) $,
 +
$  \omega ( Jx , Jy) = \omega ( x , y) $
 +
and  $  \omega ( x , y) = g ( x , Jy) $.
 +
Any of the forms  $  g $,
 +
$  \omega $
 +
determines  $  h $
 +
uniquely.
 +
 
 +
A Hermitian metric on a complex vector bundle  $  \pi :  E \rightarrow M $
 +
is a function  $  g :  p \mapsto g _ {p} $
 +
on the base  $  M $
 +
that associates with a point  $  p \in M $
 +
a Hermitian metric  $  g _ {p} $
 +
in the fibre  $  E ( p) = \pi  ^ {-} 1 ( p) $
 +
of  $  \pi $
 +
and that satisfies the following smoothness condition: For any smooth local sections  $  e $
 +
and  $  e  ^ {*} $
 +
of  $  \pi $
 +
the function  $  p \mapsto g _ {p} ( e _ {p} , e _ {p}  ^ {*} ) $
 +
is smooth.
 +
 
 +
Every complex vector bundle has a Hermitian metric. A [[Connection|connection]] $  \nabla $
 +
on a complex vector bundle $  \pi $
 +
is said to be compatible with a Hermitian metric $  g $
 +
if $  g $
 +
and the operator $  J $
 +
defined by the complex structure in the fibres of $  \pi $
 +
are parallel with respect to $  \nabla $(
 +
that is, $  \nabla g = \nabla J = 0 $),  
 +
in other words, if the corresponding parallel displacement of the fibres of $  \pi $
 +
along curves on the base is an isometry of the fibres as unitary spaces. For every Hermitian metric there is a connection compatible with it, but the latter is, generally speaking, not unique. When $  \pi $
 +
is a holomorphic vector bundle over a complex manifold $  M $(
 +
see [[Vector bundle, analytic|Vector bundle, analytic]]), there is a unique connection $  \nabla $
 +
of $  \pi $
 +
that is compatible with a given Hermitian metric and that satisfies the following condition: The covariant derivative of any holomorphic section $  e $
 +
of $  \pi $
 +
relative to any anti-holomorphic complex vector field $  \overline{X}\; $
 +
on $  M $
 +
vanishes (the canonical Hermitian connection). The [[Curvature|curvature]] form of this connection can be regarded as a $  2 $-
 +
form of type $  ( 1 , 1 ) $
 +
on $  M $
 +
with values in the bundle of endomorphisms of $  \pi $.  
 +
The canonical connection can also be viewed as a connection on the principal $  \mathop{\rm GL} _ {n} ( \mathbf C ) $-
 +
bundle $  \widetilde \pi  : P \rightarrow M $
 +
associated with the holomorphic vector bundle $  \pi $
 +
of complex dimension $  n $.  
 +
It can be characterized as the only connection on $  \widetilde \pi  $
 +
with complex horizontal subspaces in the tangent spaces of the complex manifold $  P $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Lichnerowicz,  "Global theory of connections and holonomy groups" , Noordhoff  (1976)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.O. Wells jr.,  "Differential analysis on complex manifolds" , Springer  (1980)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Weil,  "Introduction à l'Aeetude des variétés kahlériennes" , Hermann  (1958)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Lichnerowicz,  "Global theory of connections and holonomy groups" , Noordhoff  (1976)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.O. Wells jr.,  "Differential analysis on complex manifolds" , Springer  (1980)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Weil,  "Introduction à l'Aeetude des variétés kahlériennes" , Hermann  (1958)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
A complex vector bundle on which a Hermitian metric is given is called a Hermitian vector bundle.
 
A complex vector bundle on which a Hermitian metric is given is called a Hermitian vector bundle.

Revision as of 22:10, 5 June 2020


A Hermitian metric on a complex vector space $ V $ is a positive-definite Hermitian form on $ V $. The space $ V $ endowed with a Hermitian metric is called a unitary (or complex-Euclidean or Hermitian) vector space, and the Hermitian metric on it is called a Hermitian scalar product. Any two Hermitian metrics on $ V $ can be transferred into each other by an automorphism of $ V $. Thus, the set of all Hermitian metrics on $ V $ is a homogeneous space for the group $ \mathop{\rm GL} _ {n} ( \mathbf C ) $ and can be identified with $ \mathop{\rm GL} _ {n} ( \mathbf C ) / U ( n) $, where $ n = \mathop{\rm dim} V $.

A complex vector space $ V $ can be viewed as a real vector space $ V ^ {\mathbf R} $ endowed with the operator defined by the complex structure $ J ( x) = ix $. If $ h $ is a Hermitian metric on $ V $, then the form $ g = \mathop{\rm Re} h $ is a Euclidean metric (a scalar product) on $ V $ and $ \omega = \mathop{\rm Im} h $ is a non-degenerate skew-symmetric bilinear form on $ V $. Here $ g ( Jx, Jy ) = g ( x , y) $, $ \omega ( Jx , Jy) = \omega ( x , y) $ and $ \omega ( x , y) = g ( x , Jy) $. Any of the forms $ g $, $ \omega $ determines $ h $ uniquely.

A Hermitian metric on a complex vector bundle $ \pi : E \rightarrow M $ is a function $ g : p \mapsto g _ {p} $ on the base $ M $ that associates with a point $ p \in M $ a Hermitian metric $ g _ {p} $ in the fibre $ E ( p) = \pi ^ {-} 1 ( p) $ of $ \pi $ and that satisfies the following smoothness condition: For any smooth local sections $ e $ and $ e ^ {*} $ of $ \pi $ the function $ p \mapsto g _ {p} ( e _ {p} , e _ {p} ^ {*} ) $ is smooth.

Every complex vector bundle has a Hermitian metric. A connection $ \nabla $ on a complex vector bundle $ \pi $ is said to be compatible with a Hermitian metric $ g $ if $ g $ and the operator $ J $ defined by the complex structure in the fibres of $ \pi $ are parallel with respect to $ \nabla $( that is, $ \nabla g = \nabla J = 0 $), in other words, if the corresponding parallel displacement of the fibres of $ \pi $ along curves on the base is an isometry of the fibres as unitary spaces. For every Hermitian metric there is a connection compatible with it, but the latter is, generally speaking, not unique. When $ \pi $ is a holomorphic vector bundle over a complex manifold $ M $( see Vector bundle, analytic), there is a unique connection $ \nabla $ of $ \pi $ that is compatible with a given Hermitian metric and that satisfies the following condition: The covariant derivative of any holomorphic section $ e $ of $ \pi $ relative to any anti-holomorphic complex vector field $ \overline{X}\; $ on $ M $ vanishes (the canonical Hermitian connection). The curvature form of this connection can be regarded as a $ 2 $- form of type $ ( 1 , 1 ) $ on $ M $ with values in the bundle of endomorphisms of $ \pi $. The canonical connection can also be viewed as a connection on the principal $ \mathop{\rm GL} _ {n} ( \mathbf C ) $- bundle $ \widetilde \pi : P \rightarrow M $ associated with the holomorphic vector bundle $ \pi $ of complex dimension $ n $. It can be characterized as the only connection on $ \widetilde \pi $ with complex horizontal subspaces in the tangent spaces of the complex manifold $ P $.

References

[1] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969)
[2] A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)
[3] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)
[4] A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958)

Comments

A complex vector bundle on which a Hermitian metric is given is called a Hermitian vector bundle.

How to Cite This Entry:
Hermitian metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hermitian_metric&oldid=18912
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article