Namespaces
Variants
Actions

Difference between revisions of "Hausdorff gap"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 41 formulas out of 42 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200401.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200402.png" /> are subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200403.png" />, then one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200404.png" /> provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200405.png" /> is finite. In addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200406.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200407.png" /> while, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200408.png" /> is infinite. Finally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200409.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004010.png" /> is finite.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004012.png" /> be infinite cardinal numbers (cf. also [[Cardinal number|Cardinal number]]), and consider the following statement:
+
Out of 42 formulas, 41 were replaced by TEX code.-->
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004013.png" />: There are a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004014.png" />-sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004015.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004016.png" /> and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004017.png" />-sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004018.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004019.png" /> such that:
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
If $A$ and $B$ are subsets of $\omega$, then one writes $A \subseteq_{*} B$ provided that $A \backslash B$ is finite. In addition, $A \subset_{*} B$ means that $A \subseteq_{*} B$ while, moreover, $B \backslash A$ is infinite. Finally, $A \cap B =_{*} \emptyset$ means that $A \cap B$ is finite.
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004020.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004021.png" />;
+
Let $\kappa$ and $\lambda$ be infinite cardinal numbers (cf. also [[Cardinal number|Cardinal number]]), and consider the following statement:
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004022.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004023.png" />;
+
$G ( \kappa , \lambda )$: There are a $\kappa$-sequence $\{ U _ { \xi } : \xi &lt; \kappa \}$ of subsets of $\omega$ and a $\lambda$-sequence $\{ V _ { \xi } : \xi &lt; \lambda \}$ of subsets of $\omega$ such that:
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004025.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004026.png" />;
+
1) $U _ { \xi } \subset _{*} U _ { \eta }$ if $\xi &lt; \eta &lt; \kappa$;
  
4) there does not exist a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004028.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004031.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004032.png" />.
+
2) $V _ { \xi } \subset_{*} V _ { \eta }$ if $\xi &lt; \eta &lt; \lambda$;
  
In [[#References|[a2]]], F. Hausdorff proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004033.png" />) is false while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004034.png" />) is true. The sets that witness the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004035.png" />) holds are called a Hausdorff gap. K. Kunen has shown in [[#References|[a3]]] that it is consistent with Martin's axiom (cf. also [[Suslin hypothesis|Suslin hypothesis]]) and the negation of the [[Continuum hypothesis|continuum hypothesis]] that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004036.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004037.png" />) both are false. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004038.png" /> is the cardinality of the continuum (cf. also [[Continuum, cardinality of the|Continuum, cardinality of the]]). He also proved that it is consistent with Martin's axiom and the negation of the continuum hypothesis that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004039.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004040.png" />) both are true. See [[#References|[a1]]] for more details.
+
3) if $\xi &lt; \kappa$ and $\eta &lt; \lambda$, then $U _ { \xi } \cap V _ { \eta } =_{*}  \emptyset$;
 +
 
 +
4) there does not exist a subset $W$ of $\omega$ such that $V _ { \xi } \subseteq_{ * } W$ for all $\xi &lt; \kappa$ and $W \cap U _ { \xi } =_{*} \emptyset$ for all $\xi &lt; \lambda$.
 +
 
 +
In [[#References|[a2]]], F. Hausdorff proved that $G ( \omega , \omega )$) is false while $G ( \omega _ { 1 } , \omega _ { 1 } )$) is true. The sets that witness the fact that $G ( \omega _ { 1 } , \omega _ { 1 } )$) holds are called a Hausdorff gap. K. Kunen has shown in [[#References|[a3]]] that it is consistent with Martin's axiom (cf. also [[Suslin hypothesis|Suslin hypothesis]]) and the negation of the [[Continuum hypothesis|continuum hypothesis]] that $G ( \omega _ { 1 } , c )$) and $G ( \mathfrak c , \mathfrak c )$) both are false. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004038.png"/> is the cardinality of the continuum (cf. also [[Continuum, cardinality of the|Continuum, cardinality of the]]). He also proved that it is consistent with Martin's axiom and the negation of the continuum hypothesis that $G ( \omega _ { 1 } , c )$) and $G ( \mathfrak c , \mathfrak c )$) both are true. See [[#References|[a1]]] for more details.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.E. Baumgartner,  "Applications of the Proper Forcing Axiom"  K. Kunen (ed.)  J.E. Vaughan (ed.) , ''Handbook of Set Theoretic Topology'' , North-Holland  (1984)  pp. 913–959</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Hausdorff,  "Summen von <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004041.png" /> Mengen"  ''Fund. Math.'' , '''26'''  (1936)  pp. 241–255</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Kunen,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004042.png" />-gaps under MA"  ''Unpublished manuscript''</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J.E. Baumgartner,  "Applications of the Proper Forcing Axiom"  K. Kunen (ed.)  J.E. Vaughan (ed.) , ''Handbook of Set Theoretic Topology'' , North-Holland  (1984)  pp. 913–959</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  F. Hausdorff,  "Summen von $\aleph_1$ Mengen"  ''Fund. Math.'' , '''26'''  (1936)  pp. 241–255</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  K. Kunen,  "$( \kappa , \lambda ^ { * } )$-gaps under MA"  ''Unpublished manuscript''</td></tr></table>

Revision as of 17:00, 1 July 2020

If $A$ and $B$ are subsets of $\omega$, then one writes $A \subseteq_{*} B$ provided that $A \backslash B$ is finite. In addition, $A \subset_{*} B$ means that $A \subseteq_{*} B$ while, moreover, $B \backslash A$ is infinite. Finally, $A \cap B =_{*} \emptyset$ means that $A \cap B$ is finite.

Let $\kappa$ and $\lambda$ be infinite cardinal numbers (cf. also Cardinal number), and consider the following statement:

$G ( \kappa , \lambda )$: There are a $\kappa$-sequence $\{ U _ { \xi } : \xi < \kappa \}$ of subsets of $\omega$ and a $\lambda$-sequence $\{ V _ { \xi } : \xi < \lambda \}$ of subsets of $\omega$ such that:

1) $U _ { \xi } \subset _{*} U _ { \eta }$ if $\xi < \eta < \kappa$;

2) $V _ { \xi } \subset_{*} V _ { \eta }$ if $\xi < \eta < \lambda$;

3) if $\xi < \kappa$ and $\eta < \lambda$, then $U _ { \xi } \cap V _ { \eta } =_{*} \emptyset$;

4) there does not exist a subset $W$ of $\omega$ such that $V _ { \xi } \subseteq_{ * } W$ for all $\xi < \kappa$ and $W \cap U _ { \xi } =_{*} \emptyset$ for all $\xi < \lambda$.

In [a2], F. Hausdorff proved that $G ( \omega , \omega )$) is false while $G ( \omega _ { 1 } , \omega _ { 1 } )$) is true. The sets that witness the fact that $G ( \omega _ { 1 } , \omega _ { 1 } )$) holds are called a Hausdorff gap. K. Kunen has shown in [a3] that it is consistent with Martin's axiom (cf. also Suslin hypothesis) and the negation of the continuum hypothesis that $G ( \omega _ { 1 } , c )$) and $G ( \mathfrak c , \mathfrak c )$) both are false. Here, is the cardinality of the continuum (cf. also Continuum, cardinality of the). He also proved that it is consistent with Martin's axiom and the negation of the continuum hypothesis that $G ( \omega _ { 1 } , c )$) and $G ( \mathfrak c , \mathfrak c )$) both are true. See [a1] for more details.

References

[a1] J.E. Baumgartner, "Applications of the Proper Forcing Axiom" K. Kunen (ed.) J.E. Vaughan (ed.) , Handbook of Set Theoretic Topology , North-Holland (1984) pp. 913–959
[a2] F. Hausdorff, "Summen von $\aleph_1$ Mengen" Fund. Math. , 26 (1936) pp. 241–255
[a3] K. Kunen, "$( \kappa , \lambda ^ { * } )$-gaps under MA" Unpublished manuscript
How to Cite This Entry:
Hausdorff gap. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hausdorff_gap&oldid=13106
This article was adapted from an original article by J. van Mill (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article