Namespaces
Variants
Actions

Hasse principle

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11Dxx Secondary: 11Gxx [MSN][ZBL]

The Hasse principle is one of the central principles of Diophantine geometry, which reduces the problem of the existence of rational points on an algebraic variety over a global field to the analogous problem over local fields.

Let $M$ be a class of algebraic varieties over a global field $K$. The Hasse principle holds in $M$ if for any $X$ in $M$ such that for all non-trivial absolute valuations $\nu$ on $K$ the set of $K_\nu$-rational points $X(K_\nu)$ of $X$ is non-empty, the set of $K$-rational points $X(K)$ is also not empty (where $K_\nu$ is the completion of $K$ relative to $\nu$). In particular, if $K$ is the field $\Q$ of rational numbers, then if the set of real points $X(\R)$ and the set of $p$-adic points $\Q_p$, for all primes $p$, are not empty, it follows that the set of rational points $X(\Q)$ is also not empty. The Hasse principle holds for quadrics [CaFr], and so it is valid for algebraic curves of genus 0 (see [Ca]). For quadrics over a number field the Hasse principle was stated and proved by H. Hasse in [Ha]. For cubic hypersurfaces the Hasse principle is not true, in general (see [Ca], [Ma]); a counterexample (over $\Q$) is the projective curve $3x^3+4y^3+5z^3 = 0$ or the projective surface $5x^3+12y^3+9z^3+10t^3=0$.

Let $G$ be an algebraic group over $K$ and let $M(G)$ be the class of algebraic varieties consisting of all principal homogeneous spaces over $G$ (see Galois cohomology; Weil–Châtelet group, and also [CaFr], [Ca], [Se]). One says that the Hasse principle holds for $G$ if it holds for $M(G)$. The Hasse principle holds for simply-connected and adjoint semi-simple algebraic groups over number fields ([Se], [Ch]). If $G$ is an Abelian variety, then the Hasse principle holds for $G$ if and only if the Shafarevich–Tate group (cf. Galois cohomology) of $G$ vanishes (see the examples in [Ru], [Ko]).

References

[Ca] J.W.S. Cassels, "Diophantine equations with special reference to elliptic curves" J. London Math. Soc., 41 (1966) pp. 193–291
[CaFr] J.W.S. Cassels (ed.) A. Fröhlich (ed.), Algebraic number theory, Acad. Press (1967)
[Ch] V. Chernusov, "The Hasse principle for groups of type $E_8$", Minsk (1988) (In Russian)
[Ha] H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" J. Reine Angew. Math., 153 (1924) pp. 113–130
[Ko] V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" Izv. Akad. Nauk. SSSR Ser. Mat., 52 : 6 (1988)
[Ma] Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic", North-Holland (1974) (Translated from Russian)
[Ru] K. Rubin, "Tate–Shafarevich groups and $L$-functions of elliptic curves with complex multiplication" Invent. Math., 89 (1987) pp. 527–560
[Se] J.-P. Serre, "Cohomologie Galoisienne", Springer (1964)
How to Cite This Entry:
Hasse principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hasse_principle&oldid=21144
This article was adapted from an original article by Yu.G. Zarkhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article