Namespaces
Variants
Actions

Hardy-Littlewood theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The Hardy–Littlewood theorem in the theory of functions of a complex variable: If $ a _ {k} \geq 0 $, $ k = 0, 1 \dots $ and if the power series

$$ f ( z) = \ \sum _ {k = 0 } ^ \infty a _ {k} z ^ {k} $$

with radius of convergence 1 satisfies on the real axis the asymptotic equality

$$ f ( x) = \ \sum _ {k = 0 } ^ \infty a _ {k} x ^ {k} \sim \ \frac{1}{1 - x } ,\ \ x \uparrow 1, $$

then the partial sums $ s _ {n} $ satisfy the asymptotic equality

$$ s _ {n} = \ \sum _ {k = 0 } ^ { n } a _ {n} \sim n,\ \ n \rightarrow \infty . $$

This theorem was established by G.H. Hardy and J.E. Littlewood [1] and is one of the Tauberian theorems.

References

[1] G.H. Hardy, J.E. Littlewood, "Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive" Proc. London. Math. Soc. (2) , 13 (1914) pp. 174–191
[2] E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979)

E.D. Solomentsev

The Hardy–Littlewood theorem on a non-negative summable function. A theorem on integral properties of a certain function connected with the given one. It was established by G.H. Hardy and J.E. Littlewood [1]. Let $ f $ be a non-negative summable function on $ [ a, b] $, and let

$$ \theta ( x) = \ \theta _ {f} ( x) = \ \sup _ {\begin{array}{c} \xi \in [ a, b] \\ \xi \neq x \end{array} } \ \frac{1}{x - \xi } \int\limits _ \xi ^ { x } f ( t) dt. $$

Then:

1) If $ f \in L _ {p} ( a, b) $, $ 1 < p < \infty $, then

$$ \int\limits _ { a } ^ { b } \theta ^ {p} ( x) \ dx \leq 2 \left ( \frac{p}{p - 1 } \right ) ^ {p} \int\limits _ { a } ^ { b } f ^ { p } ( x) dx. $$

2) If $ f \in L _ {1} ( a, b) $, then for all $ \alpha \in ( 0, 1) $,

$$ \int\limits _ { a } ^ { b } \theta ^ \alpha ( x) dx \leq \ \frac{2 ( b - a) ^ {1 - \alpha } }{1 - \alpha } \int\limits _ { a } ^ { b } f ( x) dx. $$

3) If $ f \mathop{\rm ln} ^ {+} f \in L _ {1} ( a, b) $, then

$$ \int\limits _ { a } ^ { b } \theta ( x) dx \leq 4 \int\limits _ { a } ^ { b } f ( x) \mathop{\rm ln} ^ {+} f ( x) dx + A, $$

where $ A $ depends only on $ b - a $. Here

$$ \mathop{\rm ln} ^ {+} u = \ \left \{ \begin{array}{ll} 0 & \textrm{ if } u < 1, \\ \mathop{\rm ln} u & \textrm{ if } u \geq 1. \\ \end{array} \right .$$

Let $ f $ be a $ 2 \pi $- periodic function that is summable on $ [- \pi , \pi ] $, and let

$$ M ( x) = \ M _ {f} ( x) = \ \sup _ {0 < | t | \leq \pi } \ { \frac{1}{t} } \int\limits _ { x } ^ { {x } + t } | f ( u) | du. $$

Then $ M _ {f} ( x) \leq \theta _ {| f | } ( x) $, where $ \theta _ {| f | } ( x) $ is constructed for $ [- 2 \pi , 2 \pi ] $. From the theorem for $ \theta $ one obtains integral inequalities for $ M $.

References

[1] G.H. Hardy, J.E. Littlewood, "A maximal theorem with function-theoretic applications" Acta. Math. , 54 (1930) pp. 81–116
[2] A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988)

A.A. Konyushkov

Comments

The function $ M _ {f} $ is called the Hardy–Littlewood maximal function for $ f $.

References

[a1] E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)
How to Cite This Entry:
Hardy-Littlewood theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy-Littlewood_theorem&oldid=47174
This article was adapted from an original article by E.D. Solomentsev, A.A. Konyushkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article