Namespaces
Variants
Actions

Difference between revisions of "Grothendieck space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102501.png" /> with the property that for all separable Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102502.png" /> (cf. [[Separable space|Separable space]]), every bounded [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102503.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102504.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102505.png" /> is weakly compact (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102506.png" /> sends bounded subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102507.png" /> into weakly compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102508.png" />).
+
<!--
 +
g1102501.png
 +
$#A+1 = 53 n = 6
 +
$#C+1 = 53 : ~/encyclopedia/old_files/data/G110/G.1100250 Grothendieck space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Banach space|Banach space]]  $  X $
 +
with the property that for all separable Banach spaces $  Y $(
 +
cf. [[Separable space|Separable space]]), every bounded [[Linear operator|linear operator]] $  T $
 +
from $  X $
 +
to $  Y $
 +
is weakly compact (i.e., $  T $
 +
sends bounded subsets of $  X $
 +
into weakly compact subsets of $  Y $).
  
 
The above property is equivalent to each of the following assertions (see [[#References|[a4]]], [[#References|[a5]]], [[#References|[a9]]]).
 
The above property is equivalent to each of the following assertions (see [[#References|[a4]]], [[#References|[a5]]], [[#References|[a9]]]).
  
1) Every weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g1102509.png" /> convergent sequence in the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025011.png" /> is weakly convergent.
+
1) Every weak- $  * $
 +
convergent sequence in the dual space $  X  ^ {*} $
 +
of $  X $
 +
is weakly convergent.
  
2) Every bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025012.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025013.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025014.png" /> is weakly compact.
+
2) Every bounded linear operator $  T $
 +
from $  X $
 +
to $  c _ {0} $
 +
is weakly compact.
  
3) For all Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025016.png" /> has a weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025017.png" /> sequentially compact unit ball, every bounded linear operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025018.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025019.png" /> is weakly compact.
+
3) For all Banach spaces $  Y $
 +
such that $  Y  ^ {*} $
 +
has a weak- $  * $
 +
sequentially compact unit ball, every bounded linear operator from $  X $
 +
to $  Y $
 +
is weakly compact.
  
4) For all weakly compactly generated Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025020.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025021.png" /> is the closed linear span of a relatively weakly compact set), every bounded linear operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025023.png" /> is weakly compact.
+
4) For all weakly compactly generated Banach spaces $  Y $(
 +
i.e., $  Y $
 +
is the closed linear span of a relatively weakly compact set), every bounded linear operator from $  X $
 +
to $  Y $
 +
is weakly compact.
  
5) For an arbitrary Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025024.png" />, the limit of any weakly convergent sequence of weakly compact operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025025.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025026.png" /> is also a weakly compact operator.
+
5) For an arbitrary Banach space $  Y $,  
 +
the limit of any weakly convergent sequence of weakly compact operators from $  X $
 +
to $  Y $
 +
is also a weakly compact operator.
  
6) For any Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025027.png" />, the limit of any strongly convergent sequence of weakly compact operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025028.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025029.png" /> is also a weakly compact operator.
+
6) For any Banach space $  Y $,  
 +
the limit of any strongly convergent sequence of weakly compact operators from $  X $
 +
to $  Y $
 +
is also a weakly compact operator.
  
 
Hence, besides the definition given at the beginning, either 1) or 2) can also be used as the definition of a Grothendieck space. Quotient spaces and complemented subspaces of a Grothendieck space are also Grothendieck spaces.
 
Hence, besides the definition given at the beginning, either 1) or 2) can also be used as the definition of a Grothendieck space. Quotient spaces and complemented subspaces of a Grothendieck space are also Grothendieck spaces.
  
Reflexive Banach spaces are obvious examples of Grothendieck spaces (cf. [[Reflexive space|Reflexive space]]). Every separable quotient space of a Grothendieck space is necessarily reflexive. The first non-trivial example of a Grothendieck space is the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025030.png" /> of continuous functions on a compact Stonean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025031.png" /> (i.e., a compact [[Hausdorff space|Hausdorff space]] in which each open set has an open closure) [[#References|[a6]]].
+
Reflexive Banach spaces are obvious examples of Grothendieck spaces (cf. [[Reflexive space|Reflexive space]]). Every separable quotient space of a Grothendieck space is necessarily reflexive. The first non-trivial example of a Grothendieck space is the space $  C ( \Omega ) $
 +
of continuous functions on a compact Stonean space $  \Omega $(
 +
i.e., a compact [[Hausdorff space|Hausdorff space]] in which each open set has an open closure) [[#References|[a6]]].
  
Other examples of Grothendieck spaces are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025033.png" /> is a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025035.png" />-Stonean space (each open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025036.png" />-set has an open closure) or a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025038.png" />-space (any two disjoint open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025039.png" />-sets have disjoint closures) (see [[#References|[a1]]], [[#References|[a10]]]); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025041.png" /> is a positive measure; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025043.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025045.png" />-algebra of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025046.png" />; injective Banach spaces; the Hardy space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025047.png" /> of all bounded analytic functions on the open unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025048.png" /> [[#References|[a2]]]; and von Neumann algebras [[#References|[a8]]].
+
Other examples of Grothendieck spaces are: $  C ( \Omega ) $,  
 +
where $  \Omega $
 +
is a compact $  \sigma $-
 +
Stonean space (each open $  F _  \sigma  $-
 +
set has an open closure) or a compact $  F $-
 +
space (any two disjoint open $  F _  \sigma  $-
 +
sets have disjoint closures) (see [[#References|[a1]]], [[#References|[a10]]]); $  L  ^  \infty  ( \mu ) $,  
 +
where $  \mu $
 +
is a positive measure; $  B ( S, \Sigma ) $,
 +
where $  \Sigma $
 +
is a $  \sigma $-
 +
algebra of subsets of $  S $;  
 +
injective Banach spaces; the Hardy space $  H  ^  \infty  ( D ) $
 +
of all bounded analytic functions on the open unit disc $  D $[[#References|[a2]]]; and von Neumann algebras [[#References|[a8]]].
  
A uniformly bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025049.png" />-semi-group of operators (cf. [[Semi-group of operators|Semi-group of operators]]) on a Grothendieck space is strongly ergodic if and only if the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025050.png" /> closure and the strong closure of the range of the dual operator of the generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025051.png" /> coincide [[#References|[a11]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025052.png" /> is a Grothendieck space, then every sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025053.png" /> of contractions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025054.png" /> which converges to the identity in the strong operator topology actually converges in the uniform operator topology (see [[#References|[a3]]], [[#References|[a7]]]). In particular, this implies equivalence of strong continuity and uniform continuity for contraction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025055.png" />-semi-groups on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025056.png" />.
+
A uniformly bounded $  C _ {0} $-
 +
semi-group of operators (cf. [[Semi-group of operators|Semi-group of operators]]) on a Grothendieck space is strongly ergodic if and only if the weak- $  * $
 +
closure and the strong closure of the range of the dual operator of the generator $  A $
 +
coincide [[#References|[a11]]]. If $  C ( K ) $
 +
is a Grothendieck space, then every sequence $  \{ T _ {n} \} $
 +
of contractions on $  C ( K ) $
 +
which converges to the identity in the strong operator topology actually converges in the uniform operator topology (see [[#References|[a3]]], [[#References|[a7]]]). In particular, this implies equivalence of strong continuity and uniform continuity for contraction $  C _ {0} $-
 +
semi-groups on $  C ( K ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Ando,  "Convergent sequences of finitely additive measures"  ''Pacific J. Math.'' , '''11'''  (1961)  pp. 395–404</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Bourgain,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025057.png" /> is a Grothendieck space"  ''Studia Math.'' , '''75'''  (1983)  pp. 193–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Th. Coulhon,  "Suites d'operateurs sur un espace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025058.png" /> de Grothendieck"  ''C.R. Acad. Sci. Paris'' , '''298'''  (1984)  pp. 13–15</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Diestel,  "Grothendieck spaces and vector measures" , ''Vector and Operator Valued Measures and Applications'' , Acad. Press  (1973)  pp. 97–108</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Diestel,  J.J. Uhl, Jr.,  "Vector measures" , ''Math. Surveys'' , '''15''' , Amer. Math. Soc.  (1977)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Grothendieck,  "Sur les applications linéaires faiblement compactes d'espaces du type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025059.png" />"  ''Canadian J. Math.'' , '''5'''  (1953)  pp. 129–173</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  H.P. Lotz,  "Uniform convergence of operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025060.png" /> and similar spaces"  ''Math. Z.'' , '''190'''  (1985)  pp. 207–220</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H. Pfitzner,  "Weak compactness in the dual of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025061.png" />-algebra is determined commutatively"  ''Math. Ann.'' , '''298'''  (1994)  pp. 349–371</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  F. Rábiger,  "Beiträge zur Strukturtheorie der Grothendieck-Räume"  ''Sitzungsber. Heidelberger Akad. Wissenschaft. Math.-Naturwiss. Kl. Abh.'' , '''4'''  (1985)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  G. L. Seever,  "Measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025062.png" />-spaces"  ''Trans. Amer. Math. Soc.'' , '''133'''  (1968)  pp. 267–280</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  S.-Y. Shaw,  "Ergodic theorems for semigroups of operators on a Grothendieck space"  ''Proc. Japan Acad.'' , '''59 (A)'''  (1983)  pp. 132–135</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Ando,  "Convergent sequences of finitely additive measures"  ''Pacific J. Math.'' , '''11'''  (1961)  pp. 395–404</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Bourgain,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025057.png" /> is a Grothendieck space"  ''Studia Math.'' , '''75'''  (1983)  pp. 193–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Th. Coulhon,  "Suites d'operateurs sur un espace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025058.png" /> de Grothendieck"  ''C.R. Acad. Sci. Paris'' , '''298'''  (1984)  pp. 13–15</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Diestel,  "Grothendieck spaces and vector measures" , ''Vector and Operator Valued Measures and Applications'' , Acad. Press  (1973)  pp. 97–108</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Diestel,  J.J. Uhl, Jr.,  "Vector measures" , ''Math. Surveys'' , '''15''' , Amer. Math. Soc.  (1977)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Grothendieck,  "Sur les applications linéaires faiblement compactes d'espaces du type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025059.png" />"  ''Canadian J. Math.'' , '''5'''  (1953)  pp. 129–173</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  H.P. Lotz,  "Uniform convergence of operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025060.png" /> and similar spaces"  ''Math. Z.'' , '''190'''  (1985)  pp. 207–220</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H. Pfitzner,  "Weak compactness in the dual of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025061.png" />-algebra is determined commutatively"  ''Math. Ann.'' , '''298'''  (1994)  pp. 349–371</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  F. Rábiger,  "Beiträge zur Strukturtheorie der Grothendieck-Räume"  ''Sitzungsber. Heidelberger Akad. Wissenschaft. Math.-Naturwiss. Kl. Abh.'' , '''4'''  (1985)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  G. L. Seever,  "Measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110250/g11025062.png" />-spaces"  ''Trans. Amer. Math. Soc.'' , '''133'''  (1968)  pp. 267–280</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  S.-Y. Shaw,  "Ergodic theorems for semigroups of operators on a Grothendieck space"  ''Proc. Japan Acad.'' , '''59 (A)'''  (1983)  pp. 132–135</TD></TR></table>

Revision as of 19:42, 5 June 2020


A Banach space $ X $ with the property that for all separable Banach spaces $ Y $( cf. Separable space), every bounded linear operator $ T $ from $ X $ to $ Y $ is weakly compact (i.e., $ T $ sends bounded subsets of $ X $ into weakly compact subsets of $ Y $).

The above property is equivalent to each of the following assertions (see [a4], [a5], [a9]).

1) Every weak- $ * $ convergent sequence in the dual space $ X ^ {*} $ of $ X $ is weakly convergent.

2) Every bounded linear operator $ T $ from $ X $ to $ c _ {0} $ is weakly compact.

3) For all Banach spaces $ Y $ such that $ Y ^ {*} $ has a weak- $ * $ sequentially compact unit ball, every bounded linear operator from $ X $ to $ Y $ is weakly compact.

4) For all weakly compactly generated Banach spaces $ Y $( i.e., $ Y $ is the closed linear span of a relatively weakly compact set), every bounded linear operator from $ X $ to $ Y $ is weakly compact.

5) For an arbitrary Banach space $ Y $, the limit of any weakly convergent sequence of weakly compact operators from $ X $ to $ Y $ is also a weakly compact operator.

6) For any Banach space $ Y $, the limit of any strongly convergent sequence of weakly compact operators from $ X $ to $ Y $ is also a weakly compact operator.

Hence, besides the definition given at the beginning, either 1) or 2) can also be used as the definition of a Grothendieck space. Quotient spaces and complemented subspaces of a Grothendieck space are also Grothendieck spaces.

Reflexive Banach spaces are obvious examples of Grothendieck spaces (cf. Reflexive space). Every separable quotient space of a Grothendieck space is necessarily reflexive. The first non-trivial example of a Grothendieck space is the space $ C ( \Omega ) $ of continuous functions on a compact Stonean space $ \Omega $( i.e., a compact Hausdorff space in which each open set has an open closure) [a6].

Other examples of Grothendieck spaces are: $ C ( \Omega ) $, where $ \Omega $ is a compact $ \sigma $- Stonean space (each open $ F _ \sigma $- set has an open closure) or a compact $ F $- space (any two disjoint open $ F _ \sigma $- sets have disjoint closures) (see [a1], [a10]); $ L ^ \infty ( \mu ) $, where $ \mu $ is a positive measure; $ B ( S, \Sigma ) $, where $ \Sigma $ is a $ \sigma $- algebra of subsets of $ S $; injective Banach spaces; the Hardy space $ H ^ \infty ( D ) $ of all bounded analytic functions on the open unit disc $ D $[a2]; and von Neumann algebras [a8].

A uniformly bounded $ C _ {0} $- semi-group of operators (cf. Semi-group of operators) on a Grothendieck space is strongly ergodic if and only if the weak- $ * $ closure and the strong closure of the range of the dual operator of the generator $ A $ coincide [a11]. If $ C ( K ) $ is a Grothendieck space, then every sequence $ \{ T _ {n} \} $ of contractions on $ C ( K ) $ which converges to the identity in the strong operator topology actually converges in the uniform operator topology (see [a3], [a7]). In particular, this implies equivalence of strong continuity and uniform continuity for contraction $ C _ {0} $- semi-groups on $ C ( K ) $.

References

[a1] T. Ando, "Convergent sequences of finitely additive measures" Pacific J. Math. , 11 (1961) pp. 395–404
[a2] J. Bourgain, " is a Grothendieck space" Studia Math. , 75 (1983) pp. 193–216
[a3] Th. Coulhon, "Suites d'operateurs sur un espace de Grothendieck" C.R. Acad. Sci. Paris , 298 (1984) pp. 13–15
[a4] J. Diestel, "Grothendieck spaces and vector measures" , Vector and Operator Valued Measures and Applications , Acad. Press (1973) pp. 97–108
[a5] J. Diestel, J.J. Uhl, Jr., "Vector measures" , Math. Surveys , 15 , Amer. Math. Soc. (1977)
[a6] A. Grothendieck, "Sur les applications linéaires faiblement compactes d'espaces du type " Canadian J. Math. , 5 (1953) pp. 129–173
[a7] H.P. Lotz, "Uniform convergence of operators on and similar spaces" Math. Z. , 190 (1985) pp. 207–220
[a8] H. Pfitzner, "Weak compactness in the dual of a -algebra is determined commutatively" Math. Ann. , 298 (1994) pp. 349–371
[a9] F. Rábiger, "Beiträge zur Strukturtheorie der Grothendieck-Räume" Sitzungsber. Heidelberger Akad. Wissenschaft. Math.-Naturwiss. Kl. Abh. , 4 (1985)
[a10] G. L. Seever, "Measures on -spaces" Trans. Amer. Math. Soc. , 133 (1968) pp. 267–280
[a11] S.-Y. Shaw, "Ergodic theorems for semigroups of operators on a Grothendieck space" Proc. Japan Acad. , 59 (A) (1983) pp. 132–135
How to Cite This Entry:
Grothendieck space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grothendieck_space&oldid=15530
This article was adapted from an original article by S.-Y. Shaw (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article