Namespaces
Variants
Actions

Grothendieck functor

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An imbedding functor (cf. Imbedding of categories) from a category $\mathcal{C}$ into the category $\hat{\mathcal{C}}$ of contravariant functors defined on $\mathcal{C}$ and taking values in the category of sets $\mathsf{Ens}$. Let $X$ be an object in a category $\mathcal{C}$; the mapping $Y \mapsto \mathrm{Hom}_{\mathcal{C}}(Y,X)$ defines a contravariant functor $h_X$ from $\mathcal{C}$ into the category of sets. For any object $F$ of $\hat{\mathcal{C}}$ there exists a natural bijection $F(X) \leftrightarrow \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,F)$ (Yoneda's lemma). Hence, in particular $$ \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,h_Y) \leftrightarrow \mathrm{Hom}_{\mathcal{C}}(X,Y) \ . $$

Accordingly, the mapping $X \mapsto h_X$ defines a full imbedding $h : \mathcal{C} \rightarrow \hat{\mathcal{C}}$, which is known as the Grothendieck functor. Using the Grothendieck functor it is possible to define algebraic structures on objects of a category (cf. Group object; Group scheme).

References

[1] I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)
[2] A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique, II" Sem. Bourbaki , Exp. 195 (1960)


Comments

In the English literature, the Grothendieck functor is commonly called the Yoneda embedding or the Yoneda–Grothendieck embedding.

References

[a1] S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7
[a2] N. Yoneda, "On the homology theory of modules" J. Fac. Sci. Tokyo. Sec. I , 7 (1954) pp. 193–227
How to Cite This Entry:
Grothendieck functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grothendieck_functor&oldid=40223
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article