Namespaces
Variants
Actions

Difference between revisions of "Green line"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
An orthogonal trajectory of a family of level surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451001.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451002.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451003.png" /> is the [[Green function|Green function]] (of the Dirichlet problem for the Laplace equation) for a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451004.png" /> in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451005.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451006.png" />, with a given pole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451007.png" />. In other words, Green lines are integral curves in the gradient field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045100/g0451008.png" />. Generalizations also exist [[#References|[2]]].
+
{{TEX|done}}
 +
An orthogonal trajectory of a family of level surfaces $G_y(x)=r$, $0\leq r<+\infty$, where $G_y(x)=G(x,y)$ is the [[Green function|Green function]] (of the Dirichlet problem for the Laplace equation) for a domain $D$ in a Euclidean space $\mathbf R^n$, $n\geq2$, with a given pole $y\in D$. In other words, Green lines are integral curves in the gradient field $\operatorname{grad}G_y(x)$. Generalizations also exist [[#References|[2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  pp. Chapt. 1  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Brélot,  G. Choquet,  "Espaces et lignes de Green"  ''Ann. Inst. Fourier'' , '''3'''  (1952)  pp. 199–263</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  pp. Chapt. 1  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Brélot,  G. Choquet,  "Espaces et lignes de Green"  ''Ann. Inst. Fourier'' , '''3'''  (1952)  pp. 199–263</TD></TR></table>

Latest revision as of 13:59, 1 October 2014

An orthogonal trajectory of a family of level surfaces $G_y(x)=r$, $0\leq r<+\infty$, where $G_y(x)=G(x,y)$ is the Green function (of the Dirichlet problem for the Laplace equation) for a domain $D$ in a Euclidean space $\mathbf R^n$, $n\geq2$, with a given pole $y\in D$. In other words, Green lines are integral curves in the gradient field $\operatorname{grad}G_y(x)$. Generalizations also exist [2].

References

[1] N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) pp. Chapt. 1 (Translated from Russian)
[2] M. Brélot, G. Choquet, "Espaces et lignes de Green" Ann. Inst. Fourier , 3 (1952) pp. 199–263
How to Cite This Entry:
Green line. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Green_line&oldid=33454
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article