Namespaces
Variants
Actions

Difference between revisions of "Gauss variational problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(details)
 
Line 1: Line 1:
 
{{TEX|done}}
 
{{TEX|done}}
A variational problem, first studied by C.F. Gauss (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. [[Energy of measures|Energy of measures]]), and let
+
A variational problem, first studied by [[Gauss, Carl Friedrich|C.F. Gauss]] (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. [[Energy of measures|Energy of measures]]), and let
  
 
$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$
 
$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$
  
define the [[Newton potential|Newton potential]] $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral
+
define the [[Newton potential]] $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral
  
 
$$\int(U^\lambda-2U^\mu)d\lambda,$$
 
$$\int(U^\lambda-2U^\mu)d\lambda,$$
Line 13: Line 13:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen  (1877)  pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen  (1877)  pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR>
 +
</table>
  
  

Latest revision as of 12:40, 20 April 2024

A variational problem, first studied by C.F. Gauss (1840) [1], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. Energy of measures), and let

$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$

define the Newton potential $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral

$$\int(U^\lambda-2U^\mu)d\lambda,$$

which is the scalar product ($\lambda-2\mu,\lambda$) in the pre-Hilbert space of measures of finite energy.

The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. Robin problem) may be obtained as a solution of the Gauss variational problem for a certain choice of $\mu$; for example, $\mu$ may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes $K$.

References

[1] C.F. Gauss, "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , Werke , 5 , K. Gesellschaft Wissenschaft. Göttingen (1877) pp. 195–242
[2] N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)
[3] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)


Comments

The measure $\mu_0$ is the projection of $\mu$ on the convex cone of all positive measures $\lambda$, of finite energy, and with support contained in $K$. See also [a1], Chapt. I.XIII for a treatment of this subject.

References

[a1] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)
How to Cite This Entry:
Gauss variational problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_variational_problem&oldid=55734
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article