Namespaces
Variants
Actions

Difference between revisions of "Fractional-linear mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: + ZBL link)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
f0412501.png
 +
$#A+1 = 121 n = 1
 +
$#C+1 = 121 : ~/encyclopedia/old_files/data/F041/F.0401250 Fractional\AAhlinear mapping,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''fractional-linear transformation''
 
''fractional-linear transformation''
  
A mapping of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412501.png" /> realized by fractional-linear functions (cf. [[Fractional-linear function|Fractional-linear function]]).
+
A mapping of the complex space $  \mathbf C  ^ {n} \rightarrow \mathbf C  ^ {n} $
 +
realized by fractional-linear functions (cf. [[Fractional-linear function|Fractional-linear function]]).
 +
 
 +
In the case of the complex plane  $  \mathbf C  ^ {1} = \mathbf C $,
 +
this is a non-constant mapping of the form
 +
 
 +
$$ \tag{1 }
 +
z  \rightarrow  w  =  L ( z)  = 
 +
\frac{a z + b }{c z + d }
 +
,
 +
$$
  
In the case of the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412502.png" />, this is a non-constant mapping of the form
+
where  $  a d - b c \neq 0 $;
 +
the unimodular normalization  $  a d - b c = 1 $
 +
is often employed. Any fractional-linear mapping can be additionally defined by the correspondence  $  \infty \rightarrow a / c $
 +
and  $  - d / c \rightarrow \infty $
 +
to yield a one-to-one mapping of the extended plane $  \overline{\mathbf C}\; $
 +
onto itself. The simplest fractional-linear mappings are the linear ones,  $  z \rightarrow w = \widetilde{a}  z + \widetilde{b}  $,
 +
which are obtained if  $  c = 0 $.
 +
All non-linear fractional-linear mappings can be represented as compositions of two linear mappings and of the mapping  $  L _ {0} $:
 +
$  z \rightarrow w = 1 / z $.  
 +
The properties of the fractional-linear mapping  $  L _ {0} $
 +
can be illustrated on the [[Riemann sphere|Riemann sphere]], since if the stereographic projection is employed, it corresponds to the rotation of the sphere through 180° around the diameter passing through the images of the points  $  \pm  1 \in \mathbf C $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
Special properties. A fractional-linear mapping maps  $  \overline{\mathbf C}\; $
 +
onto itself, conformally and bijectively. The circle property: Under a fractional-linear mapping any circle in  $  \overline{\mathbf C}\; $(
 +
i.e. a circle in  $  \mathbf C $
 +
or a straight line supplemented by the point  $  \infty $)
 +
transforms into a circle in  $  \overline{\mathbf C}\; $.  
 +
The invariance of the ratio of two symmetrically-located points: A pair of points  $  z , z  ^ {*} $
 +
which is symmetric with respect to any circle in  $  \overline{\mathbf C}\; $
 +
becomes, as a result of a fractional-linear mapping, a pair of points  $  w , w  ^ {*} $
 +
which is symmetric with respect to the image of this circle. The cross ratio between four points in  $  \overline{\mathbf C}\; $
 +
is invariant with respect to a fractional-linear mapping, i.e. if that mapping transforms the points  $  \xi _ {1} , \xi _ {2} , \xi _ {3} , \xi _ {4} $
 +
into the points  $  \zeta _ {1} , \zeta _ {2} , \zeta _ {3} , \zeta _ {4} $,
 +
respectively, then
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412504.png" />; the unimodular normalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412505.png" /> is often employed. Any fractional-linear mapping can be additionally defined by the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412507.png" /> to yield a one-to-one mapping of the extended plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412508.png" /> onto itself. The simplest fractional-linear mappings are the linear ones, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412509.png" />, which are obtained if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125010.png" />. All non-linear fractional-linear mappings can be represented as compositions of two linear mappings and of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125011.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125012.png" />. The properties of the fractional-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125013.png" /> can be illustrated on the [[Riemann sphere|Riemann sphere]], since if the stereographic projection is employed, it corresponds to the rotation of the sphere through 180° around the diameter passing through the images of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125014.png" />.
+
$$ \tag{2 }
  
Special properties. A fractional-linear mapping maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125015.png" /> onto itself, conformally and bijectively. The circle property: Under a fractional-linear mapping any circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125016.png" /> (i.e. a circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125017.png" /> or a straight line supplemented by the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125018.png" />) transforms into a circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125019.png" />. The invariance of the ratio of two symmetrically-located points: A pair of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125020.png" /> which is symmetric with respect to any circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125021.png" /> becomes, as a result of a fractional-linear mapping, a pair of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125022.png" /> which is symmetric with respect to the image of this circle. The cross ratio between four points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125023.png" /> is invariant with respect to a fractional-linear mapping, i.e. if that mapping transforms the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125024.png" /> into the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125025.png" />, respectively, then
+
\frac{\xi _ {3} - \xi _ {1} }{\xi _ {3} - \xi _ {2} }
 +
  :
 +
\frac{\xi _ {4} -
 +
\xi _ {1} }{\xi _ {4} - \xi _ {2} }
 +
  =
 +
\frac{\zeta _ {3} - \zeta _ {1}  }{\zeta _ {3} - \zeta _ {2} }
 +
  :
 +
\frac{\zeta _ {4} - \zeta _ {1} }{\zeta _ {4} - \zeta _ {2} }
 +
.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
For any given triplets  $  \xi _ {1} , \xi _ {2} , \xi _ {3} $
 +
and  $  \zeta _ {1} , \zeta _ {2} , \zeta _ {3} $
 +
of pairwise distinct points in  $  \overline{\mathbf C}\; $
 +
there exists one and only one fractional-linear mapping which transforms  $  \xi _ {k} \rightarrow \zeta _ {k} $,
 +
$  k = 1 , 2 , 3 $,
 +
respectively. This fractional-linear mapping can be found from equation (2) by substituting in it  $  z $
 +
and  $  w $
 +
for  $  \xi _ {4} $
 +
and  $  \zeta _ {4} $,
 +
respectively. The group property: The set of all fractional-linear mappings forms a non-commutative group with respect to composition  $  ( L _ {1} L _ {2} ) ( z) = L _ {1} ( L _ {2} ( z) ) $,
 +
with unit element  $  E ( z) = z $.  
 +
The universality property: Any conformal automorphism of  $  \overline{\mathbf C}\; $
 +
is a fractional-linear mapping and therefore the group of all fractional-linear mappings coincides with the group  $  \mathop{\rm Aut}  \overline{\mathbf C}\; $
 +
of all conformal automorphisms of  $  \overline{\mathbf C}\; $.
  
For any given triplets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125028.png" /> of pairwise distinct points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125029.png" /> there exists one and only one fractional-linear mapping which transforms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125031.png" />, respectively. This fractional-linear mapping can be found from equation (2) by substituting in it <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125033.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125035.png" />, respectively. The group property: The set of all fractional-linear mappings forms a non-commutative group with respect to composition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125036.png" />, with unit element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125037.png" />. The universality property: Any conformal automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125039.png" /> is a fractional-linear mapping and therefore the group of all fractional-linear mappings coincides with the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125040.png" /> of all conformal automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125041.png" />.
+
All conformal automorphisms of the unit disc  $  B = \{ {z \in \mathbf C } : {| z | < 1 } \} $
 +
form a subgroup  $  \mathop{\rm Aut}  B $
 +
of the group $  \mathop{\rm Aut}  \overline{\mathbf C}\; $,
 +
consisting of fractional-linear mappings of the type
  
All conformal automorphisms of the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125042.png" /> form a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125043.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125044.png" />, consisting of fractional-linear mappings of the type
+
$$
 +
z  \rightarrow  w  = e ^ {i \theta }
 +
\frac{z - \alpha }{1 - \overline \alpha \; z }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125045.png" /></td> </tr></table>
+
,\  | \alpha | < 1 ,\  \mathop{\rm Im}  \theta = 0 .
 +
$$
  
The same applies to the conformal automorphisms of the upper half-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125046.png" />; they have the form
+
The same applies to the conformal automorphisms of the upper half-plane $  \{ {z \in \mathbf C } : { \mathop{\rm Im}  z > 0 } \} $;  
 +
they have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125047.png" /></td> </tr></table>
+
$$
 +
z  \rightarrow  w  =
 +
\frac{a z + b }{c z + d }
 +
,\  \mathop{\rm Im} ( a , b ,\
 +
c , d ) = 0 ,\  a d - b c > 0 .
 +
$$
  
 
All conformal homeomorphisms of the upper half-plane onto the unit disc have the form
 
All conformal homeomorphisms of the upper half-plane onto the unit disc have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125048.png" /></td> </tr></table>
+
$$
 +
z  \rightarrow  w  = e ^ {i \theta }
 +
\frac{z - \beta }{z - \overline \beta \; }
 +
,\ \
 +
\mathop{\rm Im}  \beta > 0 ,\  \mathop{\rm Im}  \theta = 0 .
 +
$$
 +
 
 +
Except for the identity fractional-linear mapping  $  E ( z) $,
 +
fractional-linear mappings have at most two distinct fixed points  $  \xi _ {1} $,
 +
$  \xi _ {2} $
 +
in  $  \overline{\mathbf C}\; $.
 +
If there are two fixed points  $  \xi _ {1} \neq \xi _ {2} $,
 +
the family  $  \Sigma $
 +
of circles passing through  $  \xi _ {1} $
 +
and  $  \xi _ {2} $
 +
is transformed by the fractional-linear transformation (1) into itself. The family  $  \Sigma  ^  \prime  $
 +
of all circles orthogonal to the circles of  $  \Sigma $
 +
is also transformed into itself. Three cases are possible in this connection.
 +
 
 +
1) Each circle of  $  \Sigma $
 +
is transformed into itself; such a fractional-linear mapping is said to be hyperbolic and is representable in normal form
  
Except for the identity fractional-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125049.png" />, fractional-linear mappings have at most two distinct fixed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125051.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125052.png" />. If there are two fixed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125053.png" />, the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125054.png" /> of circles passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125056.png" /> is transformed by the fractional-linear transformation (1) into itself. The family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125057.png" /> of all circles orthogonal to the circles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125058.png" /> is also transformed into itself. Three cases are possible in this connection.
+
$$ \tag{3 }
  
1) Each circle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125059.png" /> is transformed into itself; such a fractional-linear mapping is said to be hyperbolic and is representable in normal form
+
\frac{w - \xi _ {1} }{w - \xi _ {2} }
 +
  = \mu
 +
\frac{z - \xi _ {1} }{
 +
z - \xi _ {2} }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125060.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
where the multiplier of the mapping is  $  \mu > 0 $,
 +
$  \mu \neq 1 , \infty $.  
 +
A unimodular fractional-linear mapping (1) is hyperbolic if and only if  $  a + d \in \mathbf R $
 +
and  $  | a + d | > 2 $.
  
where the multiplier of the mapping is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125062.png" />. A unimodular fractional-linear mapping (1) is hyperbolic if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125064.png" />.
+
2) Each circle of $  \Sigma  ^  \prime  $
 +
is transformed into itself; such a fractional-linear mapping is said to be elliptic and, in normal form (3), is characterized by a multiplier  $  \mu $
 +
such that  $  | \mu | = 1 $,  
 +
$  \mu \neq 1 $.  
 +
A unimodular fractional-linear mapping (1) is elliptic if and only if $  a + d \in \mathbf R $,
 +
$  | a + d | < 2 $.
  
2) Each circle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125065.png" /> is transformed into itself; such a fractional-linear mapping is said to be elliptic and, in normal form (3), is characterized by a multiplier <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125066.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125068.png" />. A unimodular fractional-linear mapping (1) is elliptic if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125070.png" />.
+
3) None of the circles of the families  $  \Sigma $
 +
and  $  \Sigma  ^  \prime  $
 +
is transformed into itself; such a fractional-linear mapping is said to be loxodromic and, in normal form (3), is characterized by a multiplier $  \mu \in \mathbf C $,
 +
$  | \mu | \neq 1 $,
 +
such that either  $  \mathop{\rm Im}  \mu \neq 0 $
 +
or  $  \mu < 0 $.  
 +
A unimodular fractional-linear mapping (1) is loxodromic if and only if $  a + d \in \mathbf C \setminus  \mathbf R $.
  
3) None of the circles of the families <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125072.png" /> is transformed into itself; such a fractional-linear mapping is said to be loxodromic and, in normal form (3), is characterized by a multiplier <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125074.png" />, such that either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125075.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125076.png" />. A unimodular fractional-linear mapping (1) is loxodromic if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125077.png" />.
+
If two fixed points merge into one point  $  \xi _ {1} $,
 +
the fractional-linear mapping is said to be parabolic. The family  $  \Sigma $
 +
in such a case consists of all the circles having a common tangent at  $  \xi _ {1} $;
 +
each circle is transformed into itself. The normal form of a parabolic fractional-linear mapping is
  
If two fixed points merge into one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125078.png" />, the fractional-linear mapping is said to be parabolic. The family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125079.png" /> in such a case consists of all the circles having a common tangent at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125080.png" />; each circle is transformed into itself. The normal form of a parabolic fractional-linear mapping is
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125081.png" /></td> </tr></table>
+
\frac{1}{w - \xi _ {1} }
 +
  =
 +
\frac{1}{z - \xi _ {1} }
 +
+ \alpha ,\  \alpha
 +
\in \mathbf C ,\  \alpha \neq 0 ,
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125082.png" />, or
+
if $  \xi _ {1} \neq \infty $,  
 +
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125083.png" /></td> </tr></table>
+
$$
 +
= z + \alpha ,\  \alpha \in \mathbf C ,\  \alpha \neq 0 ,
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125084.png" />. A unimodular fractional-linear mapping (1) is parabolic if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125085.png" />.
+
if $  \xi _ {1} = \infty $.  
 +
A unimodular fractional-linear mapping (1) is parabolic if and only if $  a + d = \pm  2 $.
  
 
Owing to the many elementary properties listed above, fractional-linear mappings find extensive use in all branches of the theory of functions of a complex variable and in various applied disciplines. In particular, a model of [[Lobachevskii geometry|Lobachevskii geometry]] can be constructed with the aid of fractional-linear mappings.
 
Owing to the many elementary properties listed above, fractional-linear mappings find extensive use in all branches of the theory of functions of a complex variable and in various applied disciplines. In particular, a model of [[Lobachevskii geometry|Lobachevskii geometry]] can be constructed with the aid of fractional-linear mappings.
  
Among the subgroups of the complete group of fractional-linear mappings discrete groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125086.png" /> of fractional-linear mappings are the most important as regards applications to the analytic theory of differential equations, the theory of automorphic functions and other problems in analysis. Elementary discrete groups of fractional-linear mappings are the finite groups; they are isomorphic either to the cyclic rotation groups of the Riemann sphere or to the rotation groups of regular polyhedra. A discrete group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125087.png" /> of fractional-linear mappings with an invariant circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125088.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125089.png" /> which is common for all transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125090.png" /> and for which the interior of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125091.png" /> is transformed into itself under all transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125092.png" />, is known as a [[Fuchsian group|Fuchsian group]]. A Fuchsian group cannot contain a loxodromic fractional-linear mapping. Historically, the first example of a Fuchsian group was the [[Modular group|modular group]] appearing in the theory of elliptic functions (see also [[Modular function|Modular function]]). The modular group consists of all unimodular fractional-linear mappings (1) in which the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125096.png" /> are integers; the real axis is invariant with respect to modular fractional-linear mappings. Non-elementary, non-Fuchsian groups of fractional-linear mappings — Kleinian groups (cf. [[Kleinian group|Kleinian group]]) — are more complicated and have been studied to a lesser extent.
+
Among the subgroups of the complete group of fractional-linear mappings discrete groups $  \Gamma $
 +
of fractional-linear mappings are the most important as regards applications to the analytic theory of differential equations, the theory of automorphic functions and other problems in analysis. Elementary discrete groups of fractional-linear mappings are the finite groups; they are isomorphic either to the cyclic rotation groups of the Riemann sphere or to the rotation groups of regular polyhedra. A discrete group $  \Gamma $
 +
of fractional-linear mappings with an invariant circle $  \gamma $
 +
in $  \overline{\mathbf C}\; $
 +
which is common for all transformations of $  \Gamma $
 +
and for which the interior of $  \gamma $
 +
is transformed into itself under all transformations of $  \Gamma $,  
 +
is known as a [[Fuchsian group|Fuchsian group]]. A Fuchsian group cannot contain a loxodromic fractional-linear mapping. Historically, the first example of a Fuchsian group was the [[Modular group|modular group]] appearing in the theory of elliptic functions (see also [[Modular function|Modular function]]). The modular group consists of all unimodular fractional-linear mappings (1) in which the coefficients $  a $,  
 +
$  b $,  
 +
$  c $,  
 +
$  d $
 +
are integers; the real axis is invariant with respect to modular fractional-linear mappings. Non-elementary, non-Fuchsian groups of fractional-linear mappings — Kleinian groups (cf. [[Kleinian group|Kleinian group]]) — are more complicated and have been studied to a lesser extent.
  
A fractional-linear mapping of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125098.png" />, is a non-degenerate mapping
+
A fractional-linear mapping of the complex space $  \mathbf C  ^ {n} $,  
 +
$  n \geq  1 $,  
 +
is a non-degenerate mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125099.png" /></td> </tr></table>
+
$$
 +
z = ( z _ {1} \dots z _ {n} ) \rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250100.png" /></td> </tr></table>
+
$$
 +
\rightarrow \
 +
w = ( w _ {1} \dots w _ {n} ) = ( L _ {1} ( z) \dots L _ {n} ( z) )
 +
$$
  
 
realizable by fractional-linear functions
 
realizable by fractional-linear functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250101.png" /></td> </tr></table>
+
$$
 +
L _ {k} ( z)  =
 +
\frac{a _ {1k} z _ {1} + \dots + a _ {nk} z _ {n} + b _ {k} }{c _ {1k} z _ {1} + \dots + c _ {nk} z _ {n} + d _ {k} }
 +
,
 +
\  k = 1 \dots n .
 +
$$
  
The most important fractional-linear mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250102.png" /> are those which extend to some compactification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250103.png" />. Thus, all linear transformations involving a rearrangement of coordinates, as well as fractional-linear mappings of the type
+
The most important fractional-linear mappings of $  \mathbf C  ^ {n} $
 +
are those which extend to some compactification of $  \mathbf C  ^ {n} $.  
 +
Thus, all linear transformations involving a rearrangement of coordinates, as well as fractional-linear mappings of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250104.png" /></td> </tr></table>
+
$$
 +
z = ( z _ {1} \dots z _ {n} )  \rightarrow  w = ( L _ {1} ( z _ {1} )
 +
\dots L _ {n} ( z _ {n} ) ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250105.png" /> is a fractional-linear mapping of the type (1) in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250106.png" />, extend to the function-theoretic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250107.png" />. The group of fractional-linear mappings generated by these mappings coincides with the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250108.png" /> of all biholomorphic automorphisms of the compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250109.png" />. The corresponding subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250110.png" />, with
+
where $  L _ {k} ( z _ {k} ) $
 +
is a fractional-linear mapping of the type (1) in the plane $  z _ {k} $,  
 +
extend to the function-theoretic space $  \overline{ {\mathbf C  ^ {n} }}\; $.  
 +
The group of fractional-linear mappings generated by these mappings coincides with the group $  \mathop{\rm Aut}  \overline{ {\mathbf C  ^ {n} }}\; $
 +
of all biholomorphic automorphisms of the compactification $  \overline{ {\mathbf C  ^ {n} }}\; $.  
 +
The corresponding subgroup $  \mathop{\rm Aut}  U  ^ {n} $,  
 +
with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250111.png" /></td> </tr></table>
+
$$
 +
L _ {k} ( z _ {k} )  = e ^ {i \theta _ {k} }
 +
\frac{z _ {k} - \alpha _ {k} }{1 - \overline \alpha \; _ {k} z _ {k} }
 +
,\  | \alpha _ {k} | < 1
 +
,\  \mathop{\rm Im}  \theta _ {k} = 0 ,
 +
$$
  
exhausts all the automorphisms of the unit polydisc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250112.png" />. Fractional-linear mappings in which
+
exhausts all the automorphisms of the unit polydisc $  U  ^ {n} = \{ {z \in \mathbf C  ^ {n} } : {| z _ {j} | < 1,  j = 1 \dots n } \} $.  
 +
Fractional-linear mappings in which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250113.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
L _ {k} ( z)  =
 +
\frac{a _ {1k} z _ {1} + \dots + a _ {nk} z _ {n} + b _ {k} }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d }
 +
  =
 +
\frac{l _ {k} ( z) }{l ( z) }
 +
,
 +
$$
  
extend to the projective closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250114.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250115.png" />. This extension has the following form in homogeneous coordinates:
+
extend to the projective closure $  \mathbf C P  ^ {n} $
 +
of the space $  \mathbf C  ^ {n} $.  
 +
This extension has the following form in homogeneous coordinates:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250116.png" /></td> </tr></table>
+
$$
 +
( z _ {0} \dots z _ {n} )  \rightarrow  \left ( z _ {0} l \left (
 +
\frac{z}{z _ {0} }
 +
\right )
 +
\dots z _ {0} l _ {n} \left (
 +
\frac{z}{z _ {0} }
 +
\right ) \right ) .
 +
$$
  
These mappings exhaust the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250117.png" /> of all biholomorphic automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250119.png" />. The automorphisms of the unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250120.png" /> form the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250121.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250122.png" /> consisting of all fractional-linear mappings of the type (4) whose coefficients are subject to certain supplementary conditions (cf. [[#References|[2]]], Vol. 2).
+
These mappings exhaust the group $  \mathop{\rm Aut}  \mathbf C P  ^ {n} $
 +
of all biholomorphic automorphisms of $  \mathbf C P  ^ {n} $.  
 +
The automorphisms of the unit ball $  B  ^ {n} = \{ {z \in \mathbf C  ^ {n} } : {| z | < 1 } \} $
 +
form the subgroup $  \mathop{\rm Aut}  B  ^ {n} $
 +
of the group $  \mathop{\rm Aut}  \mathbf C P  ^ {n} $
 +
consisting of all fractional-linear mappings of the type (4) whose coefficients are subject to certain supplementary conditions (cf. [[#References|[2]]], Vol. 2).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Einführung in die Funktionentheorie" , '''1–3''' , Teubner  (1958–1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Stoilow,  "The theory of functions of a complex variable" , '''1''' , Moscow  (1962)  (In Russian; translated from Rumanian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.R. Ford,  "Automorphic functions" , Chelsea, reprint  (1951)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Einführung in die Funktionentheorie" , '''1–3''' , Teubner  (1958–1959)  (Translated from Russian)</TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  S. Stoilow,  "The theory of functions of a complex variable" , '''1''' , Moscow  (1962)  (In Russian; translated from Rumanian)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  L.R. Ford,  "Automorphic functions" , Chelsea, reprint  (1951) {{ZBL|1364.30001}}</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====
A good reference for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250123.png" /> is [[#References|[a1]]]. Fractional-linear mappings are also known as Möbius transformations.
+
A good reference for $  \mathop{\rm Aut}  B  ^ {n} $
 +
is [[#References|[a1]]]. Fractional-linear mappings are also known as Möbius transformations.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Function theory in the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250124.png" />" , Springer  (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Z. Nehari,  "Conformal mapping" , Dover, reprint  (1975)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Schwerdtfeger,  "Geometry of complex numbers" , Dover, reprint  (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Function theory in the unit ball in $\CC^n$ , Springer  (1980) {{ZBL|0495.32001}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  Z. Nehari,  "Conformal mapping" , Dover, reprint  (1975)</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Schwerdtfeger,  "Geometry of complex numbers" , Dover, reprint  (1979)</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR>
 +
</table>

Latest revision as of 13:58, 17 March 2023


fractional-linear transformation

A mapping of the complex space $ \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} $ realized by fractional-linear functions (cf. Fractional-linear function).

In the case of the complex plane $ \mathbf C ^ {1} = \mathbf C $, this is a non-constant mapping of the form

$$ \tag{1 } z \rightarrow w = L ( z) = \frac{a z + b }{c z + d } , $$

where $ a d - b c \neq 0 $; the unimodular normalization $ a d - b c = 1 $ is often employed. Any fractional-linear mapping can be additionally defined by the correspondence $ \infty \rightarrow a / c $ and $ - d / c \rightarrow \infty $ to yield a one-to-one mapping of the extended plane $ \overline{\mathbf C}\; $ onto itself. The simplest fractional-linear mappings are the linear ones, $ z \rightarrow w = \widetilde{a} z + \widetilde{b} $, which are obtained if $ c = 0 $. All non-linear fractional-linear mappings can be represented as compositions of two linear mappings and of the mapping $ L _ {0} $: $ z \rightarrow w = 1 / z $. The properties of the fractional-linear mapping $ L _ {0} $ can be illustrated on the Riemann sphere, since if the stereographic projection is employed, it corresponds to the rotation of the sphere through 180° around the diameter passing through the images of the points $ \pm 1 \in \mathbf C $.

Special properties. A fractional-linear mapping maps $ \overline{\mathbf C}\; $ onto itself, conformally and bijectively. The circle property: Under a fractional-linear mapping any circle in $ \overline{\mathbf C}\; $( i.e. a circle in $ \mathbf C $ or a straight line supplemented by the point $ \infty $) transforms into a circle in $ \overline{\mathbf C}\; $. The invariance of the ratio of two symmetrically-located points: A pair of points $ z , z ^ {*} $ which is symmetric with respect to any circle in $ \overline{\mathbf C}\; $ becomes, as a result of a fractional-linear mapping, a pair of points $ w , w ^ {*} $ which is symmetric with respect to the image of this circle. The cross ratio between four points in $ \overline{\mathbf C}\; $ is invariant with respect to a fractional-linear mapping, i.e. if that mapping transforms the points $ \xi _ {1} , \xi _ {2} , \xi _ {3} , \xi _ {4} $ into the points $ \zeta _ {1} , \zeta _ {2} , \zeta _ {3} , \zeta _ {4} $, respectively, then

$$ \tag{2 } \frac{\xi _ {3} - \xi _ {1} }{\xi _ {3} - \xi _ {2} } : \frac{\xi _ {4} - \xi _ {1} }{\xi _ {4} - \xi _ {2} } = \frac{\zeta _ {3} - \zeta _ {1} }{\zeta _ {3} - \zeta _ {2} } : \frac{\zeta _ {4} - \zeta _ {1} }{\zeta _ {4} - \zeta _ {2} } . $$

For any given triplets $ \xi _ {1} , \xi _ {2} , \xi _ {3} $ and $ \zeta _ {1} , \zeta _ {2} , \zeta _ {3} $ of pairwise distinct points in $ \overline{\mathbf C}\; $ there exists one and only one fractional-linear mapping which transforms $ \xi _ {k} \rightarrow \zeta _ {k} $, $ k = 1 , 2 , 3 $, respectively. This fractional-linear mapping can be found from equation (2) by substituting in it $ z $ and $ w $ for $ \xi _ {4} $ and $ \zeta _ {4} $, respectively. The group property: The set of all fractional-linear mappings forms a non-commutative group with respect to composition $ ( L _ {1} L _ {2} ) ( z) = L _ {1} ( L _ {2} ( z) ) $, with unit element $ E ( z) = z $. The universality property: Any conformal automorphism of $ \overline{\mathbf C}\; $ is a fractional-linear mapping and therefore the group of all fractional-linear mappings coincides with the group $ \mathop{\rm Aut} \overline{\mathbf C}\; $ of all conformal automorphisms of $ \overline{\mathbf C}\; $.

All conformal automorphisms of the unit disc $ B = \{ {z \in \mathbf C } : {| z | < 1 } \} $ form a subgroup $ \mathop{\rm Aut} B $ of the group $ \mathop{\rm Aut} \overline{\mathbf C}\; $, consisting of fractional-linear mappings of the type

$$ z \rightarrow w = e ^ {i \theta } \frac{z - \alpha }{1 - \overline \alpha \; z } ,\ | \alpha | < 1 ,\ \mathop{\rm Im} \theta = 0 . $$

The same applies to the conformal automorphisms of the upper half-plane $ \{ {z \in \mathbf C } : { \mathop{\rm Im} z > 0 } \} $; they have the form

$$ z \rightarrow w = \frac{a z + b }{c z + d } ,\ \mathop{\rm Im} ( a , b ,\ c , d ) = 0 ,\ a d - b c > 0 . $$

All conformal homeomorphisms of the upper half-plane onto the unit disc have the form

$$ z \rightarrow w = e ^ {i \theta } \frac{z - \beta }{z - \overline \beta \; } ,\ \ \mathop{\rm Im} \beta > 0 ,\ \mathop{\rm Im} \theta = 0 . $$

Except for the identity fractional-linear mapping $ E ( z) $, fractional-linear mappings have at most two distinct fixed points $ \xi _ {1} $, $ \xi _ {2} $ in $ \overline{\mathbf C}\; $. If there are two fixed points $ \xi _ {1} \neq \xi _ {2} $, the family $ \Sigma $ of circles passing through $ \xi _ {1} $ and $ \xi _ {2} $ is transformed by the fractional-linear transformation (1) into itself. The family $ \Sigma ^ \prime $ of all circles orthogonal to the circles of $ \Sigma $ is also transformed into itself. Three cases are possible in this connection.

1) Each circle of $ \Sigma $ is transformed into itself; such a fractional-linear mapping is said to be hyperbolic and is representable in normal form

$$ \tag{3 } \frac{w - \xi _ {1} }{w - \xi _ {2} } = \mu \frac{z - \xi _ {1} }{ z - \xi _ {2} } , $$

where the multiplier of the mapping is $ \mu > 0 $, $ \mu \neq 1 , \infty $. A unimodular fractional-linear mapping (1) is hyperbolic if and only if $ a + d \in \mathbf R $ and $ | a + d | > 2 $.

2) Each circle of $ \Sigma ^ \prime $ is transformed into itself; such a fractional-linear mapping is said to be elliptic and, in normal form (3), is characterized by a multiplier $ \mu $ such that $ | \mu | = 1 $, $ \mu \neq 1 $. A unimodular fractional-linear mapping (1) is elliptic if and only if $ a + d \in \mathbf R $, $ | a + d | < 2 $.

3) None of the circles of the families $ \Sigma $ and $ \Sigma ^ \prime $ is transformed into itself; such a fractional-linear mapping is said to be loxodromic and, in normal form (3), is characterized by a multiplier $ \mu \in \mathbf C $, $ | \mu | \neq 1 $, such that either $ \mathop{\rm Im} \mu \neq 0 $ or $ \mu < 0 $. A unimodular fractional-linear mapping (1) is loxodromic if and only if $ a + d \in \mathbf C \setminus \mathbf R $.

If two fixed points merge into one point $ \xi _ {1} $, the fractional-linear mapping is said to be parabolic. The family $ \Sigma $ in such a case consists of all the circles having a common tangent at $ \xi _ {1} $; each circle is transformed into itself. The normal form of a parabolic fractional-linear mapping is

$$ \frac{1}{w - \xi _ {1} } = \frac{1}{z - \xi _ {1} } + \alpha ,\ \alpha \in \mathbf C ,\ \alpha \neq 0 , $$

if $ \xi _ {1} \neq \infty $, or

$$ w = z + \alpha ,\ \alpha \in \mathbf C ,\ \alpha \neq 0 , $$

if $ \xi _ {1} = \infty $. A unimodular fractional-linear mapping (1) is parabolic if and only if $ a + d = \pm 2 $.

Owing to the many elementary properties listed above, fractional-linear mappings find extensive use in all branches of the theory of functions of a complex variable and in various applied disciplines. In particular, a model of Lobachevskii geometry can be constructed with the aid of fractional-linear mappings.

Among the subgroups of the complete group of fractional-linear mappings discrete groups $ \Gamma $ of fractional-linear mappings are the most important as regards applications to the analytic theory of differential equations, the theory of automorphic functions and other problems in analysis. Elementary discrete groups of fractional-linear mappings are the finite groups; they are isomorphic either to the cyclic rotation groups of the Riemann sphere or to the rotation groups of regular polyhedra. A discrete group $ \Gamma $ of fractional-linear mappings with an invariant circle $ \gamma $ in $ \overline{\mathbf C}\; $ which is common for all transformations of $ \Gamma $ and for which the interior of $ \gamma $ is transformed into itself under all transformations of $ \Gamma $, is known as a Fuchsian group. A Fuchsian group cannot contain a loxodromic fractional-linear mapping. Historically, the first example of a Fuchsian group was the modular group appearing in the theory of elliptic functions (see also Modular function). The modular group consists of all unimodular fractional-linear mappings (1) in which the coefficients $ a $, $ b $, $ c $, $ d $ are integers; the real axis is invariant with respect to modular fractional-linear mappings. Non-elementary, non-Fuchsian groups of fractional-linear mappings — Kleinian groups (cf. Kleinian group) — are more complicated and have been studied to a lesser extent.

A fractional-linear mapping of the complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, is a non-degenerate mapping

$$ z = ( z _ {1} \dots z _ {n} ) \rightarrow $$

$$ \rightarrow \ w = ( w _ {1} \dots w _ {n} ) = ( L _ {1} ( z) \dots L _ {n} ( z) ) $$

realizable by fractional-linear functions

$$ L _ {k} ( z) = \frac{a _ {1k} z _ {1} + \dots + a _ {nk} z _ {n} + b _ {k} }{c _ {1k} z _ {1} + \dots + c _ {nk} z _ {n} + d _ {k} } , \ k = 1 \dots n . $$

The most important fractional-linear mappings of $ \mathbf C ^ {n} $ are those which extend to some compactification of $ \mathbf C ^ {n} $. Thus, all linear transformations involving a rearrangement of coordinates, as well as fractional-linear mappings of the type

$$ z = ( z _ {1} \dots z _ {n} ) \rightarrow w = ( L _ {1} ( z _ {1} ) \dots L _ {n} ( z _ {n} ) ) , $$

where $ L _ {k} ( z _ {k} ) $ is a fractional-linear mapping of the type (1) in the plane $ z _ {k} $, extend to the function-theoretic space $ \overline{ {\mathbf C ^ {n} }}\; $. The group of fractional-linear mappings generated by these mappings coincides with the group $ \mathop{\rm Aut} \overline{ {\mathbf C ^ {n} }}\; $ of all biholomorphic automorphisms of the compactification $ \overline{ {\mathbf C ^ {n} }}\; $. The corresponding subgroup $ \mathop{\rm Aut} U ^ {n} $, with

$$ L _ {k} ( z _ {k} ) = e ^ {i \theta _ {k} } \frac{z _ {k} - \alpha _ {k} }{1 - \overline \alpha \; _ {k} z _ {k} } ,\ | \alpha _ {k} | < 1 ,\ \mathop{\rm Im} \theta _ {k} = 0 , $$

exhausts all the automorphisms of the unit polydisc $ U ^ {n} = \{ {z \in \mathbf C ^ {n} } : {| z _ {j} | < 1, j = 1 \dots n } \} $. Fractional-linear mappings in which

$$ \tag{4 } L _ {k} ( z) = \frac{a _ {1k} z _ {1} + \dots + a _ {nk} z _ {n} + b _ {k} }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d } = \frac{l _ {k} ( z) }{l ( z) } , $$

extend to the projective closure $ \mathbf C P ^ {n} $ of the space $ \mathbf C ^ {n} $. This extension has the following form in homogeneous coordinates:

$$ ( z _ {0} \dots z _ {n} ) \rightarrow \left ( z _ {0} l \left ( \frac{z}{z _ {0} } \right ) \dots z _ {0} l _ {n} \left ( \frac{z}{z _ {0} } \right ) \right ) . $$

These mappings exhaust the group $ \mathop{\rm Aut} \mathbf C P ^ {n} $ of all biholomorphic automorphisms of $ \mathbf C P ^ {n} $. The automorphisms of the unit ball $ B ^ {n} = \{ {z \in \mathbf C ^ {n} } : {| z | < 1 } \} $ form the subgroup $ \mathop{\rm Aut} B ^ {n} $ of the group $ \mathop{\rm Aut} \mathbf C P ^ {n} $ consisting of all fractional-linear mappings of the type (4) whose coefficients are subject to certain supplementary conditions (cf. [2], Vol. 2).

References

[1] I.I. [I.I. Privalov] Priwalow, "Einführung in die Funktionentheorie" , 1–3 , Teubner (1958–1959) (Translated from Russian)
[2] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)
[3] S. Stoilow, "The theory of functions of a complex variable" , 1 , Moscow (1962) (In Russian; translated from Rumanian)
[4] L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951) Zbl 1364.30001

Comments

A good reference for $ \mathop{\rm Aut} B ^ {n} $ is [a1]. Fractional-linear mappings are also known as Möbius transformations.

References

[a1] W. Rudin, "Function theory in the unit ball in $\CC^n$ , Springer (1980) Zbl 0495.32001
[a2] Z. Nehari, "Conformal mapping" , Dover, reprint (1975)
[a3] H. Schwerdtfeger, "Geometry of complex numbers" , Dover, reprint (1979)
[a4] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
Fractional-linear mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fractional-linear_mapping&oldid=17849
This article was adapted from an original article by E.P. DolzhenkoE.D. SolomentsevE.M. Chirka (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article