Namespaces
Variants
Actions

Difference between revisions of "Fraïssé characterization of elementary equivalence"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
f1101601.png
 +
$#A+1 = 195 n = 0
 +
$#C+1 = 195 : ~/encyclopedia/old_files/data/F110/F.1100160 Fra\AGiss\Aee characterization of elementary equivalence
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Interpretations for a [[Formal language|formal language]] are equivalent provided that they give the same truth values to sentences in the language. Equivalent interpretations for first-order languages are said to be elementarily equivalent. R. Fraïssé [[#References|[a2]]] established a characterization for elementary equivalence that is purely mathematical, in the sense that it does not mention sentences. Unlike the characterizations of S. Kochen [[#References|[a5]]] and H.J. Keisler [[#References|[a4]]], Fraïssé's characterization applies only to those first-order languages whose non-logical vocabulary is finite and contains no functional constants.
 
Interpretations for a [[Formal language|formal language]] are equivalent provided that they give the same truth values to sentences in the language. Equivalent interpretations for first-order languages are said to be elementarily equivalent. R. Fraïssé [[#References|[a2]]] established a characterization for elementary equivalence that is purely mathematical, in the sense that it does not mention sentences. Unlike the characterizations of S. Kochen [[#References|[a5]]] and H.J. Keisler [[#References|[a4]]], Fraïssé's characterization applies only to those first-order languages whose non-logical vocabulary is finite and contains no functional constants.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101601.png" /> be such a first-order language (with equality). Each predicate constant in the non-logical vocabulary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101602.png" /> is associated with an unique positive integer called its degree. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101603.png" /> be an infinite set of individual constants not in the non-logical vocabulary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101604.png" />. The family of first-order languages <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101605.png" /> is defined as follows:
+
Let $  L $
 +
be such a first-order language (with equality). Each predicate constant in the non-logical vocabulary of $  L $
 +
is associated with an unique positive integer called its degree. Let $  \{ c _ {1} \dots c _ {n} , \dots \} $
 +
be an infinite set of individual constants not in the non-logical vocabulary of $  L $.  
 +
The family of first-order languages $  \{ {L ( n ) } : {n \geq  0 } \} $
 +
is defined as follows:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101606.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101607.png" />;
+
1) $  L ( 0 ) $
 +
is $  L $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101608.png" /> is the language obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101609.png" /> by adding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016010.png" /> to the non-logical vocabulary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016011.png" />.
+
2) $  L ( n + 1 ) $
 +
is the language obtained from $  L ( n ) $
 +
by adding $  c _ {n+1 }  $
 +
to the non-logical vocabulary of $  L ( n ) $.
  
Interpretations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016012.png" /> are ordered pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016014.png" /> is a non-empty set (the domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016015.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016016.png" /> is a function defined on the non-logical vocabulary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016017.png" /> as follows:
+
Interpretations for $  L ( n ) $
 +
are ordered pairs $  \mathfrak A = ( A,f _ {\mathfrak A} ) $,  
 +
where $  A $
 +
is a non-empty set (the domain of $  \mathfrak A $)  
 +
and f _ {\mathfrak A} $
 +
is a function defined on the non-logical vocabulary of $  L ( n ) $
 +
as follows:
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016018.png" /> is an individual constant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016019.png" /> (the denotation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016020.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016021.png" />) is a member of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016022.png" />;
+
1) if $  k $
 +
is an individual constant, f _ {\mathfrak A} ( k ) $(
 +
the denotation of $  k $
 +
on $  \mathfrak A $)  
 +
is a member of $  A $;
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016023.png" /> is a predicate constant of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016025.png" /> (the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016026.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016027.png" />) is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016028.png" />.
+
2) if $  P $
 +
is a predicate constant of degree $  m $,  
 +
f _ {\mathfrak A} ( P ) $(
 +
the extension of $  P $
 +
on $  \mathfrak A $)  
 +
is a subset of $  A  ^ {m} $.
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016029.png" /> is an interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016031.png" /> are members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016033.png" /> denotes the interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016034.png" /> with domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016035.png" /> that agrees with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016036.png" /> on the non-logical vocabulary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016037.png" /> and in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016038.png" /> is the denotation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016039.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016041.png" />.
+
When $  \mathfrak A $
 +
is an interpretation of $  L ( n ) $
 +
and $  b _ {1} \dots b _ {t} $
 +
are members of $  A $,  
 +
$  ( \mathfrak A b _ {1} \dots b _ {t} ) $
 +
denotes the interpretation of $  L ( n + t ) $
 +
with domain $  A $
 +
that agrees with $  \mathfrak A $
 +
on the non-logical vocabulary of $  L ( n ) $
 +
and in which $  b _ {i} $
 +
is the denotation of $  c _ {n+i }  $
 +
for all $  i $,  
 +
$  1 \leq  i \leq  t $.
  
Given interpretations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016045.png" /> is a sub-interpretation, or subsystem, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016046.png" /> provided that:
+
Given interpretations $  \mathfrak A $
 +
and $  \mathfrak B $
 +
for $  L ( n ) $,  
 +
$  \mathfrak A $
 +
is a sub-interpretation, or subsystem, of $  \mathfrak B $
 +
provided that:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016047.png" />;
+
1) $  A \subseteq B $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016049.png" /> give the same denotations to individual constants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016050.png" />;
+
2) f _ {\mathfrak A} $
 +
and f _ {\mathfrak B} $
 +
give the same denotations to individual constants of $  L ( n ) $;
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016051.png" /> is a predicate constant of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png" />.
+
3) if $  P $
 +
is a predicate constant of degree $  m $,
 +
f _ {\mathfrak A} ( P ) = f _ {\mathfrak B} ( P ) \cap A  ^ {m} $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016054.png" /> be a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016055.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016056.png" /> denotes the subsystem of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016057.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016058.png" /> (i.e., the smallest subsystem of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016059.png" /> whose domain contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016060.png" />). When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016061.png" /> is non-empty, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016062.png" /> exists and its domain is finite if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016063.png" /> is finite. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016064.png" /> denote the null set. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016065.png" /> exists when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016066.png" /> or when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016068.png" /> contains individual constants.
+
Let $  D $
 +
be a subset of $  A $.  
 +
$  \mathfrak A [ D ] $
 +
denotes the subsystem of $  \mathfrak A $
 +
generated by $  D $(
 +
i.e., the smallest subsystem of $  \mathfrak A $
 +
whose domain contains $  D $).  
 +
When $  D $
 +
is non-empty, $  \mathfrak A [ D ] $
 +
exists and its domain is finite if $  D $
 +
is finite. Let $  \Lambda $
 +
denote the null set. $  \mathfrak A [ \Lambda ] $
 +
exists when $  n \geq  1 $
 +
or when $  n = 0 $
 +
and $  L ( 0 ) $
 +
contains individual constants.
  
For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016070.png" /> is defined on pairs of interpretations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016071.png" /> as follows:
+
For each $  l \geq  0 $,  
 +
$  \sim _ {l} $
 +
is defined on pairs of interpretations for $  L ( n ) $
 +
as follows:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016072.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016074.png" /> are isomorphic;
+
1) $  \mathfrak A \sim _ {0} \mathfrak B $
 +
if and only if $  \mathfrak A [ \Lambda ] $
 +
and $  \mathfrak B [ \Lambda ] $
 +
are isomorphic;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016075.png" /> if and only if
+
2) $  \mathfrak A \sim _ {l + 1 }  \mathfrak B $
 +
if and only if
  
2a) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016076.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016077.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016078.png" />;
+
2a) for all $  a \in A $
 +
there is a $  b \in B $
 +
such that $  ( \mathfrak A a ) \sim _ {l} ( \mathfrak B b ) $;
  
2b) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016079.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016080.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016081.png" />.
+
2b) for all $  b \in B $
 +
there is an $  a \in A $
 +
such that $  ( \mathfrak B b ) \sim _ {l} ( \mathfrak A a ) $.
  
Fraïssé proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016082.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016083.png" /> are elementarily equivalent if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016084.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016085.png" />.
+
Fraïssé proved that $  \mathfrak A $
 +
and $  \mathfrak B $
 +
are elementarily equivalent if and only if $  \mathfrak A \sim _ {l} \mathfrak B $
 +
for all $  l \geq  0 $.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016086.png" /> a sentence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016088.png" /> is the number of distinct variables occurring in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016089.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016090.png" /> is called the quantifier rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016091.png" />. One writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016094.png" /> give the same truth values to all sentences in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016095.png" /> of quantifier rank less than or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016096.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016097.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016098.png" /> are elementarily equivalent if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016099.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160100.png" />.
+
For $  \phi $
 +
a sentence in $  L ( n ) $,  
 +
$  q ( \phi ) $
 +
is the number of distinct variables occurring in $  \phi $;  
 +
$  q ( \phi ) $
 +
is called the quantifier rank of $  \phi $.  
 +
One writes $  \mathfrak A \equiv _ {l} \mathfrak B $
 +
when $  \mathfrak A $
 +
and $  \mathfrak B $
 +
give the same truth values to all sentences in $  L ( n ) $
 +
of quantifier rank less than or equal to $  l $.  
 +
$  \mathfrak A $
 +
and $  \mathfrak B $
 +
are elementarily equivalent if and only if $  \mathfrak A \equiv _ {l} \mathfrak B $
 +
for all $  l \geq  0 $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160101.png" /> be an [[Enumeration|enumeration]] (without repeats) of the individual variables in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160102.png" />. Fix an enumeration (without repeats) of the formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160103.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160104.png" /> be a non-empty finite set of formulas. There is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160105.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160107.png" /> occurs before <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160108.png" /> in the enumeration when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160109.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160110.png" /> denote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160111.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160112.png" /> denote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160113.png" />.
+
Let $  x _ {1} \dots x _ {n} , \dots $
 +
be an [[Enumeration|enumeration]] (without repeats) of the individual variables in $  L $.  
 +
Fix an enumeration (without repeats) of the formulas in $  L ( n ) $.  
 +
Let $  S $
 +
be a non-empty finite set of formulas. There is an $  m $
 +
such that $  S = \{ \phi _ {1} \dots \phi _ {m} \} $
 +
and $  \phi _ {i} $
 +
occurs before $  \phi _ {j} $
 +
in the enumeration when $  i < j $.  
 +
Let $  \& S $
 +
denote $  ( \phi _ {1} \& \dots \& \phi _ {n} ) $,  
 +
and let $  \lor S $
 +
denote $  ( \phi _ {1} \lor \dots \lor \phi _ {n} ) $.
  
Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160115.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160116.png" />, and a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160117.png" /> of members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160118.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160119.png" />, the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160120.png" /> is defined as follows. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png" /> is the conjunction of the set consisting of all atomic formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160122.png" /> in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160123.png" /> which are satisfied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160124.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160125.png" />, and of the negations of all such formulas which are not satisfied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160126.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160127.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160128.png" /> is the conjunction of
+
Given $  \mathfrak A $,  
 +
$  m \geq  0 $,  
 +
$  l \geq  0 $,  
 +
and a sequence $  {\overline{a}\; } $
 +
of members of $  A $
 +
of length $  m $,  
 +
the formula $  \psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } $
 +
is defined as follows. $  \psi _ {\mathfrak A}  ^ {0} {\overline{a}\; } $
 +
is the conjunction of the set consisting of all atomic formulas in $  L ( n ) $
 +
in the variables $  x _ {1} \dots x _ {m} $
 +
which are satisfied by $  {\overline{a}\; } $
 +
in $  \mathfrak A $,  
 +
and of the negations of all such formulas which are not satisfied by $  {\overline{a}\; } $
 +
in $  \mathfrak A $.  
 +
$  \psi _ {\mathfrak A} ^ {l+1 } {\overline{a}\; } $
 +
is the conjunction of
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160129.png" /></td> </tr></table>
+
$$
 +
\& \left \{ {\exists x _ {n + 1 }  \psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } a } : {a \in A } \right \}
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160130.png" /></td> </tr></table>
+
$$
 +
\forall x _ {n + 1 }  \lor \left \{ {\psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } a } : {a \in A } \right \} .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160131.png" /> denote the null sequence. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160132.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160133.png" /> is written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160134.png" />. For fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160136.png" /> there are only finitely many formulas of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160137.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160138.png" /> is a formula in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160139.png" /> free variables and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160140.png" /> bound variables. Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160141.png" /> is of quantifier rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160142.png" />.
+
Let $  e $
 +
denote the null sequence. When $  m = 0 $,  
 +
$  \psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } $
 +
is written $  \psi _ {\mathfrak A}  ^ {l} e $.  
 +
For fixed $  m $
 +
and $  l $
 +
there are only finitely many formulas of the form $  \psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } $.  
 +
$  \psi _ {\mathfrak A}  ^ {l} {\overline{a}\; } $
 +
is a formula in $  m $
 +
free variables and $  l $
 +
bound variables. Hence $  \psi _ {\mathfrak A}  ^ {l} e $
 +
is of quantifier rank $  l $.
  
Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160143.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160144.png" /> are interpretations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160145.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160146.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160147.png" /> are natural numbers such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160148.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160149.png" /> is a sequence of members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160150.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160151.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160152.png" /> is a sequence of members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160153.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160154.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160155.png" /> is satisfied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160156.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160157.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160158.png" />. This result implies that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160159.png" /> the following assertions are equivalent:
+
Assume that $  \mathfrak A $
 +
and $  \mathfrak B $
 +
are interpretations for $  L ( n ) $,  
 +
$  m $
 +
and $  l $
 +
are natural numbers such that $  1 \leq  m \leq  l $,  
 +
$  {\overline{a}\; } $
 +
is a sequence of members of $  A $
 +
of length $  m $,  
 +
and $  {\overline{b}\; } $
 +
is a sequence of members of $  B $
 +
of length $  m $.  
 +
$  \psi _ {\mathfrak A} ^ {l - m } {\overline{a}\; } $
 +
is satisfied by $  {\overline{b}\; } $
 +
in $  \mathfrak B $
 +
if and only if $  ( \mathfrak A {\overline{a}\; } ) \sim _ {l - m }  ( \mathfrak B {\overline{b}\; } ) $.  
 +
This result implies that for all $  l \geq  0 $
 +
the following assertions are equivalent:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160160.png" />;
+
1) $  \mathfrak A \equiv _ {l} \mathfrak B $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png" />;
+
2) $  \mathfrak A \sim _ {l} \mathfrak B $;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160162.png" /> is a model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160163.png" />. Fraïssé's characterization is immediate.
+
3) $  \mathfrak B $
 +
is a model of $  \psi _ {\mathfrak A}  ^ {l} e $.  
 +
Fraïssé's characterization is immediate.
  
It also follows that any sentence of quantifier rank less than or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160164.png" /> which is true on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160165.png" /> is a logical consequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160166.png" /> (i.e., true on all models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160167.png" />). Hence every such sentence of its negation is a logical consequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160168.png" />. Since for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160169.png" /> there are only finitely many sentences of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160170.png" />, there are only finitely many non-equivalent sentences of quantifier rank less than or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160171.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160172.png" /> be a sentence of quantifier rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160173.png" />. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160174.png" /> has models. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160175.png" /> be the sentence
+
It also follows that any sentence of quantifier rank less than or equal to $  l $
 +
which is true on $  \mathfrak A $
 +
is a logical consequence of $  \psi _ {\mathfrak A}  ^ {l} e $(
 +
i.e., true on all models of $  \psi _ {\mathfrak A}  ^ {l} e $).  
 +
Hence every such sentence of its negation is a logical consequence of $  \psi _ {\mathfrak A}  ^ {l} e $.  
 +
Since for fixed $  l $
 +
there are only finitely many sentences of the form $  \psi _ {\mathfrak A}  ^ {l} e $,  
 +
there are only finitely many non-equivalent sentences of quantifier rank less than or equal to $  l $.  
 +
Let $  \phi $
 +
be a sentence of quantifier rank $  l $.  
 +
Assume that $  \phi $
 +
has models. Let $  \psi $
 +
be the sentence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160176.png" /></td> </tr></table>
+
$$
 +
\lor \left \{ {\psi _ {\mathfrak A}  ^ {l} e } : {\phi  \textrm{ is  true  on  }  \mathfrak A } \right \} .
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160177.png" /> is a distributive normal form in the sense of J. Hintikka [[#References|[a3]]]. Furthermore, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160178.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160179.png" /> are logically equivalent (i.e., have exactly the same models).
+
$  \psi $
 +
is a distributive normal form in the sense of J. Hintikka [[#References|[a3]]]. Furthermore, $  \phi $
 +
and $  \psi $
 +
are logically equivalent (i.e., have exactly the same models).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160180.png" /> be a set of sentences. Call <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160181.png" /> a theory when every logical consequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160182.png" /> is a member of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160183.png" />. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160184.png" /> has models. Let
+
Let $  T $
 +
be a set of sentences. Call $  T $
 +
a theory when every logical consequence of $  T $
 +
is a member of $  T $.  
 +
Assume that $  T $
 +
has models. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160185.png" /></td> </tr></table>
+
$$
 +
P ( T,l ) = \lor \left \{ {\psi _ {\mathfrak A}  ^ {l} e } : {\mathfrak A  \textrm{ is  a  model  of  }  T } \right \} .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160186.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160187.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160188.png" /> have exactly the same models; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160189.png" /> is decidable if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160190.png" /> is recursive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160191.png" /> is finitely axiomatizable if and only if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160192.png" /> such that the models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160193.png" /> are closed under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160194.png" />.
+
Let $  P ( T, \omega ) = \{ {P ( T,l ) } : {l \geq  0 } \} $.  
 +
$  T $
 +
and $  P ( T, \omega ) $
 +
have exactly the same models; $  T $
 +
is decidable if and only if $  P ( T, \omega ) $
 +
is recursive and $  T $
 +
is finitely axiomatizable if and only if there is an $  l $
 +
such that the models of $  T $
 +
are closed under $  \sim _ {l} $.
  
Alternative definitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160195.png" /> can be found in [[#References|[a6]]] and [[#References|[a7]]]. A. Ehrenfeucht [[#References|[a1]]] independently obtained Fraïssé's characterization formulated in terms of two-person games. Fraïssé's characterization has been extended to provide characterizations of equivalence for a variety of "non-elementary" languages. For example, see [[#References|[a6]]], [[#References|[a7]]], and [[#References|[a8]]].
+
Alternative definitions of $  \sim _ {l} $
 +
can be found in [[#References|[a6]]] and [[#References|[a7]]]. A. Ehrenfeucht [[#References|[a1]]] independently obtained Fraïssé's characterization formulated in terms of two-person games. Fraïssé's characterization has been extended to provide characterizations of equivalence for a variety of "non-elementary" languages. For example, see [[#References|[a6]]], [[#References|[a7]]], and [[#References|[a8]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ehrenfeucht, "An application of games to the completeness problem for formalised theories" ''Fundam. Math.'' , '''49''' (1956) pp. 129–141</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraïssé, "Sur quelques classifications des relations basés sur des isomorphismes restraintes" ''Publ. Sci. Univ. Alger. Ser. A'' , '''2''' (1955) pp. 11–60, 273–295</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Hintikka, "Distributive normal forms in first order logic" J.N. Crossley (ed.) M.A.E. Dummet (ed.) , ''Formal Systems and Recursive Functions'' , North-Holland (1965) pp. 48–91</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H.J. Keisler, "Ultraproducts and elementary classes" ''Indagationes Mathematicae'' , '''23''' (1961) pp. 277–295 {{MR|0140396}} {{ZBL|0118.01501}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Kochen, "Ultraproducts in the theory of models" ''Ann. of Math.'' , '''74''' (1961) pp. 231–261</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Mostowski, "Thirty years of foundational studies" , Barnes and Noble (1966)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Scott, "Logic with denumerably long formulas and finite strings of quantifiers" J.W. Addison (ed.) L. Henkin (ed.) A. Tarski (ed.) , ''The Theory of Models'' , North-Holland (1966) pp. 329–341</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G. Weaver, J. Welaish, "Back and forth arguments in modal logic" ''J. Symb. Logic'' , '''51''' (1987) pp. 969–980</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ehrenfeucht, "An application of games to the completeness problem for formalised theories" ''Fundam. Math.'' , '''49''' (1956) pp. 129–141</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraïssé, "Sur quelques classifications des relations basés sur des isomorphismes restraintes" ''Publ. Sci. Univ. Alger. Ser. A'' , '''2''' (1955) pp. 11–60, 273–295</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Hintikka, "Distributive normal forms in first order logic" J.N. Crossley (ed.) M.A.E. Dummet (ed.) , ''Formal Systems and Recursive Functions'' , North-Holland (1965) pp. 48–91</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H.J. Keisler, "Ultraproducts and elementary classes" ''Indagationes Mathematicae'' , '''23''' (1961) pp. 277–295 {{MR|0140396}} {{ZBL|0118.01501}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Kochen, "Ultraproducts in the theory of models" ''Ann. of Math.'' , '''74''' (1961) pp. 231–261</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Mostowski, "Thirty years of foundational studies" , Barnes and Noble (1966)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Scott, "Logic with denumerably long formulas and finite strings of quantifiers" J.W. Addison (ed.) L. Henkin (ed.) A. Tarski (ed.) , ''The Theory of Models'' , North-Holland (1966) pp. 329–341</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G. Weaver, J. Welaish, "Back and forth arguments in modal logic" ''J. Symb. Logic'' , '''51''' (1987) pp. 969–980</TD></TR></table>

Latest revision as of 19:40, 5 June 2020


Interpretations for a formal language are equivalent provided that they give the same truth values to sentences in the language. Equivalent interpretations for first-order languages are said to be elementarily equivalent. R. Fraïssé [a2] established a characterization for elementary equivalence that is purely mathematical, in the sense that it does not mention sentences. Unlike the characterizations of S. Kochen [a5] and H.J. Keisler [a4], Fraïssé's characterization applies only to those first-order languages whose non-logical vocabulary is finite and contains no functional constants.

Let $ L $ be such a first-order language (with equality). Each predicate constant in the non-logical vocabulary of $ L $ is associated with an unique positive integer called its degree. Let $ \{ c _ {1} \dots c _ {n} , \dots \} $ be an infinite set of individual constants not in the non-logical vocabulary of $ L $. The family of first-order languages $ \{ {L ( n ) } : {n \geq 0 } \} $ is defined as follows:

1) $ L ( 0 ) $ is $ L $;

2) $ L ( n + 1 ) $ is the language obtained from $ L ( n ) $ by adding $ c _ {n+1 } $ to the non-logical vocabulary of $ L ( n ) $.

Interpretations for $ L ( n ) $ are ordered pairs $ \mathfrak A = ( A,f _ {\mathfrak A} ) $, where $ A $ is a non-empty set (the domain of $ \mathfrak A $) and $ f _ {\mathfrak A} $ is a function defined on the non-logical vocabulary of $ L ( n ) $ as follows:

1) if $ k $ is an individual constant, $ f _ {\mathfrak A} ( k ) $( the denotation of $ k $ on $ \mathfrak A $) is a member of $ A $;

2) if $ P $ is a predicate constant of degree $ m $, $ f _ {\mathfrak A} ( P ) $( the extension of $ P $ on $ \mathfrak A $) is a subset of $ A ^ {m} $.

When $ \mathfrak A $ is an interpretation of $ L ( n ) $ and $ b _ {1} \dots b _ {t} $ are members of $ A $, $ ( \mathfrak A b _ {1} \dots b _ {t} ) $ denotes the interpretation of $ L ( n + t ) $ with domain $ A $ that agrees with $ \mathfrak A $ on the non-logical vocabulary of $ L ( n ) $ and in which $ b _ {i} $ is the denotation of $ c _ {n+i } $ for all $ i $, $ 1 \leq i \leq t $.

Given interpretations $ \mathfrak A $ and $ \mathfrak B $ for $ L ( n ) $, $ \mathfrak A $ is a sub-interpretation, or subsystem, of $ \mathfrak B $ provided that:

1) $ A \subseteq B $;

2) $ f _ {\mathfrak A} $ and $ f _ {\mathfrak B} $ give the same denotations to individual constants of $ L ( n ) $;

3) if $ P $ is a predicate constant of degree $ m $, $ f _ {\mathfrak A} ( P ) = f _ {\mathfrak B} ( P ) \cap A ^ {m} $.

Let $ D $ be a subset of $ A $. $ \mathfrak A [ D ] $ denotes the subsystem of $ \mathfrak A $ generated by $ D $( i.e., the smallest subsystem of $ \mathfrak A $ whose domain contains $ D $). When $ D $ is non-empty, $ \mathfrak A [ D ] $ exists and its domain is finite if $ D $ is finite. Let $ \Lambda $ denote the null set. $ \mathfrak A [ \Lambda ] $ exists when $ n \geq 1 $ or when $ n = 0 $ and $ L ( 0 ) $ contains individual constants.

For each $ l \geq 0 $, $ \sim _ {l} $ is defined on pairs of interpretations for $ L ( n ) $ as follows:

1) $ \mathfrak A \sim _ {0} \mathfrak B $ if and only if $ \mathfrak A [ \Lambda ] $ and $ \mathfrak B [ \Lambda ] $ are isomorphic;

2) $ \mathfrak A \sim _ {l + 1 } \mathfrak B $ if and only if

2a) for all $ a \in A $ there is a $ b \in B $ such that $ ( \mathfrak A a ) \sim _ {l} ( \mathfrak B b ) $;

2b) for all $ b \in B $ there is an $ a \in A $ such that $ ( \mathfrak B b ) \sim _ {l} ( \mathfrak A a ) $.

Fraïssé proved that $ \mathfrak A $ and $ \mathfrak B $ are elementarily equivalent if and only if $ \mathfrak A \sim _ {l} \mathfrak B $ for all $ l \geq 0 $.

For $ \phi $ a sentence in $ L ( n ) $, $ q ( \phi ) $ is the number of distinct variables occurring in $ \phi $; $ q ( \phi ) $ is called the quantifier rank of $ \phi $. One writes $ \mathfrak A \equiv _ {l} \mathfrak B $ when $ \mathfrak A $ and $ \mathfrak B $ give the same truth values to all sentences in $ L ( n ) $ of quantifier rank less than or equal to $ l $. $ \mathfrak A $ and $ \mathfrak B $ are elementarily equivalent if and only if $ \mathfrak A \equiv _ {l} \mathfrak B $ for all $ l \geq 0 $.

Let $ x _ {1} \dots x _ {n} , \dots $ be an enumeration (without repeats) of the individual variables in $ L $. Fix an enumeration (without repeats) of the formulas in $ L ( n ) $. Let $ S $ be a non-empty finite set of formulas. There is an $ m $ such that $ S = \{ \phi _ {1} \dots \phi _ {m} \} $ and $ \phi _ {i} $ occurs before $ \phi _ {j} $ in the enumeration when $ i < j $. Let $ \& S $ denote $ ( \phi _ {1} \& \dots \& \phi _ {n} ) $, and let $ \lor S $ denote $ ( \phi _ {1} \lor \dots \lor \phi _ {n} ) $.

Given $ \mathfrak A $, $ m \geq 0 $, $ l \geq 0 $, and a sequence $ {\overline{a}\; } $ of members of $ A $ of length $ m $, the formula $ \psi _ {\mathfrak A} ^ {l} {\overline{a}\; } $ is defined as follows. $ \psi _ {\mathfrak A} ^ {0} {\overline{a}\; } $ is the conjunction of the set consisting of all atomic formulas in $ L ( n ) $ in the variables $ x _ {1} \dots x _ {m} $ which are satisfied by $ {\overline{a}\; } $ in $ \mathfrak A $, and of the negations of all such formulas which are not satisfied by $ {\overline{a}\; } $ in $ \mathfrak A $. $ \psi _ {\mathfrak A} ^ {l+1 } {\overline{a}\; } $ is the conjunction of

$$ \& \left \{ {\exists x _ {n + 1 } \psi _ {\mathfrak A} ^ {l} {\overline{a}\; } a } : {a \in A } \right \} $$

and

$$ \forall x _ {n + 1 } \lor \left \{ {\psi _ {\mathfrak A} ^ {l} {\overline{a}\; } a } : {a \in A } \right \} . $$

Let $ e $ denote the null sequence. When $ m = 0 $, $ \psi _ {\mathfrak A} ^ {l} {\overline{a}\; } $ is written $ \psi _ {\mathfrak A} ^ {l} e $. For fixed $ m $ and $ l $ there are only finitely many formulas of the form $ \psi _ {\mathfrak A} ^ {l} {\overline{a}\; } $. $ \psi _ {\mathfrak A} ^ {l} {\overline{a}\; } $ is a formula in $ m $ free variables and $ l $ bound variables. Hence $ \psi _ {\mathfrak A} ^ {l} e $ is of quantifier rank $ l $.

Assume that $ \mathfrak A $ and $ \mathfrak B $ are interpretations for $ L ( n ) $, $ m $ and $ l $ are natural numbers such that $ 1 \leq m \leq l $, $ {\overline{a}\; } $ is a sequence of members of $ A $ of length $ m $, and $ {\overline{b}\; } $ is a sequence of members of $ B $ of length $ m $. $ \psi _ {\mathfrak A} ^ {l - m } {\overline{a}\; } $ is satisfied by $ {\overline{b}\; } $ in $ \mathfrak B $ if and only if $ ( \mathfrak A {\overline{a}\; } ) \sim _ {l - m } ( \mathfrak B {\overline{b}\; } ) $. This result implies that for all $ l \geq 0 $ the following assertions are equivalent:

1) $ \mathfrak A \equiv _ {l} \mathfrak B $;

2) $ \mathfrak A \sim _ {l} \mathfrak B $;

3) $ \mathfrak B $ is a model of $ \psi _ {\mathfrak A} ^ {l} e $. Fraïssé's characterization is immediate.

It also follows that any sentence of quantifier rank less than or equal to $ l $ which is true on $ \mathfrak A $ is a logical consequence of $ \psi _ {\mathfrak A} ^ {l} e $( i.e., true on all models of $ \psi _ {\mathfrak A} ^ {l} e $). Hence every such sentence of its negation is a logical consequence of $ \psi _ {\mathfrak A} ^ {l} e $. Since for fixed $ l $ there are only finitely many sentences of the form $ \psi _ {\mathfrak A} ^ {l} e $, there are only finitely many non-equivalent sentences of quantifier rank less than or equal to $ l $. Let $ \phi $ be a sentence of quantifier rank $ l $. Assume that $ \phi $ has models. Let $ \psi $ be the sentence

$$ \lor \left \{ {\psi _ {\mathfrak A} ^ {l} e } : {\phi \textrm{ is true on } \mathfrak A } \right \} . $$

$ \psi $ is a distributive normal form in the sense of J. Hintikka [a3]. Furthermore, $ \phi $ and $ \psi $ are logically equivalent (i.e., have exactly the same models).

Let $ T $ be a set of sentences. Call $ T $ a theory when every logical consequence of $ T $ is a member of $ T $. Assume that $ T $ has models. Let

$$ P ( T,l ) = \lor \left \{ {\psi _ {\mathfrak A} ^ {l} e } : {\mathfrak A \textrm{ is a model of } T } \right \} . $$

Let $ P ( T, \omega ) = \{ {P ( T,l ) } : {l \geq 0 } \} $. $ T $ and $ P ( T, \omega ) $ have exactly the same models; $ T $ is decidable if and only if $ P ( T, \omega ) $ is recursive and $ T $ is finitely axiomatizable if and only if there is an $ l $ such that the models of $ T $ are closed under $ \sim _ {l} $.

Alternative definitions of $ \sim _ {l} $ can be found in [a6] and [a7]. A. Ehrenfeucht [a1] independently obtained Fraïssé's characterization formulated in terms of two-person games. Fraïssé's characterization has been extended to provide characterizations of equivalence for a variety of "non-elementary" languages. For example, see [a6], [a7], and [a8].

References

[a1] A. Ehrenfeucht, "An application of games to the completeness problem for formalised theories" Fundam. Math. , 49 (1956) pp. 129–141
[a2] R. Fraïssé, "Sur quelques classifications des relations basés sur des isomorphismes restraintes" Publ. Sci. Univ. Alger. Ser. A , 2 (1955) pp. 11–60, 273–295
[a3] J. Hintikka, "Distributive normal forms in first order logic" J.N. Crossley (ed.) M.A.E. Dummet (ed.) , Formal Systems and Recursive Functions , North-Holland (1965) pp. 48–91
[a4] H.J. Keisler, "Ultraproducts and elementary classes" Indagationes Mathematicae , 23 (1961) pp. 277–295 MR0140396 Zbl 0118.01501
[a5] S. Kochen, "Ultraproducts in the theory of models" Ann. of Math. , 74 (1961) pp. 231–261
[a6] A. Mostowski, "Thirty years of foundational studies" , Barnes and Noble (1966)
[a7] D. Scott, "Logic with denumerably long formulas and finite strings of quantifiers" J.W. Addison (ed.) L. Henkin (ed.) A. Tarski (ed.) , The Theory of Models , North-Holland (1966) pp. 329–341
[a8] G. Weaver, J. Welaish, "Back and forth arguments in modal logic" J. Symb. Logic , 51 (1987) pp. 969–980
How to Cite This Entry:
Fraïssé characterization of elementary equivalence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fra%C3%AFss%C3%A9_characterization_of_elementary_equivalence&oldid=24445
This article was adapted from an original article by G. Weaver (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article