Namespaces
Variants
Actions

Fourier-Stieltjes transform

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


One of the integral transforms (cf. Integral transform) related to the Fourier transform. Let the function $ F $ have bounded variation on $ (- \infty , + \infty ) $. The function

$$ \tag{* } \phi ( x) = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ {+\infty } e ^ {-} ixy dF ( y) $$

is called the Fourier–Stieltjes transform of $ F $. The function $ \phi $ determined by the integral (*) is bounded and continuous. Every periodic function $ \phi $ that can be expanded in an absolutely-convergent Fourier series $ \sum _ {- \infty } ^ {+ \infty } a _ {n} e ^ {inx} $ can be written as an integral (*) with $ F ( x) = \sum _ {n \leq x } a _ {n} $.

Formula (*) can be inverted: If $ F $ has bounded variation and if

$$ F ^ \bullet ( x) = \ { \frac{F ( x + 0) + F ( x - 0) }{2} } , $$

then

$$ F ^ \bullet ( x) - F ^ \bullet ( 0) = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ {+\infty } \phi ( \xi ) \frac{e ^ {i \xi x } - 1 }{i \xi } \ d \xi ,\ \ x \in (- \infty , + \infty ), $$

where the integral is taken to mean the principal value at $ \infty $.

If one only allows non-decreasing functions of bounded variation as the function $ F $ in formula (*), then the set of continuous functions $ \phi $ thus obtained is completely characterized by the property: For any system of real numbers $ t _ {1} \dots t _ {n} $,

$$ \sum _ {i, j = 1 } ^ { n } \phi ( t _ {i} - t _ {j} ) \xi _ {i} \overline \xi \; _ {j} \geq 0, $$

whatever the complex numbers $ \xi _ {1} \dots \xi _ {n} $( the Bochner–Khinchin theorem). Such functions are called positive definite. The Fourier–Stieltjes transform is extensively applied in probability theory, where the non-decreasing function

$$ P ( x) = \ { \frac{1}{\sqrt {2 \pi } } } F ( x) $$

is subjected to the additional restrictions $ \lim\limits _ {x \rightarrow - \infty } P ( x) = 0 $, $ \lim\limits _ {x \rightarrow + \infty } P ( x) = 1 $ and $ P $ is continuous on the left; it is called a distribution, and

$$ \Phi(x) = \int\limits_{-\infty}^{+\infty} e^{ixy} dP(y) $$

is called the characteristic function (of the distribution $ P $). The Bochner–Khinchin theorem then expresses a necessary and sufficient condition for a continuous function $ \Phi $( for which $ \Phi ( 0) = 1 $) to be the characteristic function of a certain distribution.

The Fourier–Stieltjes transform has also been developed in the $ n $- dimensional case.

References

[1] S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)
[2] A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988)
[3] B.V. Gnedenko, "The theory of probability", Chelsea, reprint (1962) (Translated from Russian)
How to Cite This Entry:
Fourier-Stieltjes transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Stieltjes_transform&oldid=55141
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article