Namespaces
Variants
Actions

Difference between revisions of "Flat form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405801.png" />-dimensional differential form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405802.png" /> on an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405803.png" /> such that: 1) the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405804.png" /> for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405805.png" />; and 2) there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405806.png" /> with
+
<!--
 +
f0405801.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/F040/F.0400580 Flat form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405807.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405808.png" /> satisfying the following condition: There exists a measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405809.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058010.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058011.png" /> is measurable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058012.png" /> and on any one of its boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058013.png" />, making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058014.png" />; moreover,
+
A measurable $  r $-
 +
dimensional differential form  $  \omega $
 +
on an open set  $  R \subset  E  ^ {n} $
 +
such that: 1) the co-mass (cf. [[Mass and co-mass|Mass and co-mass]])  $  | \omega | _ {0} \leq  N _ {1} $
 +
for a given  $  N _ {1} $;  
 +
and 2) there exists an  $  N _ {2} $
 +
with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058015.png" /></td> </tr></table>
+
$$
 +
\left |\; \int\limits _ {\partial  \sigma ^ {r + 1 } } \omega
 +
\right |  \leq  N _ {2} | \sigma  ^ {r+1} |
 +
$$
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058016.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058017.png" />-dimensional Lebesgue measure of the intersection of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058018.png" /> with some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058019.png" />-dimensional plane.
+
for any simplex  $  \sigma ^ {r+ 1 } $
 +
satisfying the following condition: There exists a measurable  $  Q \subset  R $,  
 +
$  | R \setminus  Q | _ {n} = 0 $,
 +
such that  $  \omega $
 +
is measurable on  $  \sigma ^ {r+ 1 } $
 +
and on any one of its boundaries  $  \sigma  ^ {r} $,
 +
making up  $  \partial  \sigma ^ {r+ 1 } $;
 +
moreover,
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058020.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058021.png" />-dimensional flat cochain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058022.png" />, there exists a bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058023.png" />-dimensional form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058025.png" /> which is measurable in any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058026.png" /> with respect to the plane which contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058027.png" />, and
+
$$
 +
| \sigma ^ {r + 1 } \setminus  Q | _ {r + 1 }  = 0,\ \
 +
| \sigma  ^ {r} \setminus  Q | _ {r}  = 0.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
Here,  $  | M | _ {s} $
 +
denotes the  $  s $-
 +
dimensional Lebesgue measure of the intersection of the set  $  M $
 +
with some  $  s $-
 +
dimensional plane.
 +
 
 +
If  $  X $
 +
is an  $  r $-dimensional flat cochain in  $  R $,
 +
there exists a bounded  $  r $-dimensional form  $  \omega _ {X} $
 +
in  $  R $
 +
which is measurable in any simplex  $  \sigma  ^ {r} $
 +
with respect to the plane which contains  $  \sigma  ^ {r} $,
 +
and
 +
 
 +
$$ \tag{1 }
 +
X \sigma  ^ {r}  = \
 +
\int\limits _ {\sigma  ^ {r} } \omega _ {X} .
 +
$$
  
 
Also
 
Also
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058029.png" /></td> </tr></table>
+
$$
 +
| \omega _ {X} | _ {0}  = | X |,\ \
 +
| \omega _ {dX} | _ {0}  = | dX |,
 +
$$
 +
 
 +
where  $  | X | $
 +
is the co-mass of the cochain  $  X $.
 +
Conversely, to any  $  r $-
 +
dimensional flat form  $  \omega $
 +
in  $  R $
 +
there corresponds, according to formula (1), a unique  $  r $-
 +
dimensional flat cochain  $  X _  \omega  $
 +
for any simplex  $  \sigma  ^ {r} $
 +
which satisfies the above condition; moreover,
 +
 
 +
$$
 +
| X _  \omega  |  \leq  N _ {1} ,\ \
 +
| d X _  \omega  |  \leq  N _ {2} .
 +
$$
 +
 
 +
The form  $  \omega $
 +
and the cochain  $  X $
 +
are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in  $  R $,
 +
and comprise the flat representative.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png" /> is the co-mass of the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058031.png" />. Conversely, to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058032.png" />-dimensional flat form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058033.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058034.png" /> there corresponds, according to formula (1), a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058035.png" />-dimensional flat cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058036.png" /> for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058037.png" /> which satisfies the above condition; moreover,
+
There is a one-to-one correspondence between the $  n $-dimensional flat cochains  $  X $
 +
and the classes of equivalent bounded measurable functions  $  \phi ( p) $,  
 +
given by  $  \omega _ {X} = \phi ( p)  dp $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058038.png" /></td> </tr></table>
+
$$
 +
\phi ( p)  = \
 +
\lim\limits _ {i \rightarrow \infty } \
  
The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058039.png" /> and the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058040.png" /> are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058041.png" />, and comprise the flat representative.
+
\frac{X \sigma _ {i} }{| \sigma _ {i} | }
 +
,
 +
$$
  
There is a one-to-one correspondence between the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058042.png" />-dimensional flat cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058043.png" /> and the classes of equivalent bounded measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png" />, given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058045.png" />, and
+
where  $  \sigma _ {1} , \sigma _ {2} ,\dots $
 +
is a sequence of  $  n $-
 +
dimensional simplices contracting towards the point  $  p $
 +
such that their diameters tend to zero, but such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058046.png" /></td> </tr></table>
+
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058047.png" /> is a sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058048.png" />-dimensional simplices contracting towards the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058049.png" /> such that their diameters tend to zero, but such that
+
\frac{| \sigma _ {i} | }{(  \mathop{\rm diam}  \sigma _ {i} )  ^ {n} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png" /></td> </tr></table>
+
\geq  \eta
 +
$$
  
for some value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058051.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058052.png" /> is the volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058053.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058054.png" />.
+
for some value of $  \eta $,  
 +
where $  | \sigma _ {i} | $
 +
is the volume $  \sigma _ {i} $
 +
for all $  i $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058055.png" /> be a measurable summable function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058056.png" /> whose values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058057.png" />-vectors; it is said to correspond to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058058.png" />-dimensional flat chain if
+
Let $  \alpha ( p) $
 +
be a measurable summable function in $  R $
 +
whose values are $  r $-
 +
vectors; it is said to correspond to an $  r $-
 +
dimensional flat chain if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058059.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\int\limits _ { R }
 +
\omega _ {X} \cdot \alpha  = X \cdot A
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058060.png" />-dimensional flat cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058061.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058062.png" /> is then called a Lebesgue chain). The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058063.png" /> is a linear one-to-one mapping of the set of equivalence classes of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058064.png" /> into the space of flat chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058065.png" />; also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058067.png" /> is the mass of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058068.png" />, (cf. [[Mass and co-mass|Mass and co-mass]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058069.png" /> is the mass of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058071.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058072.png" />. In addition, the set of images of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058073.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058074.png" />.
+
for all $  r $-
 +
dimensional flat cochains $  X $
 +
($  A $
 +
is then called a Lebesgue chain). The mapping $  \alpha \rightarrow A $
 +
is a linear one-to-one mapping of the set of equivalence classes of functions $  \alpha ( p) $
 +
into the space of flat chains $  C _ {r}  ^  \flat  ( R) $;  
 +
also, $  | A | = \int _ {R} | \alpha | _ {0} $,  
 +
where $  | A | $
 +
is the mass of the chain $  A $,  
 +
(cf. [[Mass and co-mass|Mass and co-mass]]) and $  | \alpha | _ {0} $
 +
is the mass of the $  r $-vector $  \alpha ( p) $.  
 +
In addition, the set of images of continuous functions $  \alpha $
 +
is dense in $  C _ {r}  ^  \flat  ( R) $.
  
Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. [[Sharp form|Sharp form]]); for instance, the differential of the flat form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058075.png" />, defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058076.png" />, is also a flat form, and Stokes' theorem: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058077.png" /> is valid for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058078.png" />; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058079.png" />-dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058080.png" /> are smooth, etc.
+
Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. [[Sharp form|Sharp form]]); for instance, the differential of the flat form $  \omega _ {X} $,  
 +
defined by the formula $  d \omega _ {X} = \omega _ {dX _  \omega  } $,  
 +
is also a flat form, and Stokes' theorem: $  \int _ {\partial  \sigma }  \omega = \int _  \sigma  d \omega $
 +
is valid for any simplex $  \sigma $;  
 +
an $  r $-
 +
dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms $  \omega $
 +
are smooth, etc.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Whitney,  "Geometric integration theory" , Princeton Univ. Press  (1957)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Whitney,  "Geometric integration theory" , Princeton Univ. Press  (1957)</TD></TR></table>

Latest revision as of 21:34, 20 February 2021


A measurable $ r $- dimensional differential form $ \omega $ on an open set $ R \subset E ^ {n} $ such that: 1) the co-mass (cf. Mass and co-mass) $ | \omega | _ {0} \leq N _ {1} $ for a given $ N _ {1} $; and 2) there exists an $ N _ {2} $ with

$$ \left |\; \int\limits _ {\partial \sigma ^ {r + 1 } } \omega \right | \leq N _ {2} | \sigma ^ {r+1} | $$

for any simplex $ \sigma ^ {r+ 1 } $ satisfying the following condition: There exists a measurable $ Q \subset R $, $ | R \setminus Q | _ {n} = 0 $, such that $ \omega $ is measurable on $ \sigma ^ {r+ 1 } $ and on any one of its boundaries $ \sigma ^ {r} $, making up $ \partial \sigma ^ {r+ 1 } $; moreover,

$$ | \sigma ^ {r + 1 } \setminus Q | _ {r + 1 } = 0,\ \ | \sigma ^ {r} \setminus Q | _ {r} = 0. $$

Here, $ | M | _ {s} $ denotes the $ s $- dimensional Lebesgue measure of the intersection of the set $ M $ with some $ s $- dimensional plane.

If $ X $ is an $ r $-dimensional flat cochain in $ R $, there exists a bounded $ r $-dimensional form $ \omega _ {X} $ in $ R $ which is measurable in any simplex $ \sigma ^ {r} $ with respect to the plane which contains $ \sigma ^ {r} $, and

$$ \tag{1 } X \sigma ^ {r} = \ \int\limits _ {\sigma ^ {r} } \omega _ {X} . $$

Also

$$ | \omega _ {X} | _ {0} = | X |,\ \ | \omega _ {dX} | _ {0} = | dX |, $$

where $ | X | $ is the co-mass of the cochain $ X $. Conversely, to any $ r $- dimensional flat form $ \omega $ in $ R $ there corresponds, according to formula (1), a unique $ r $- dimensional flat cochain $ X _ \omega $ for any simplex $ \sigma ^ {r} $ which satisfies the above condition; moreover,

$$ | X _ \omega | \leq N _ {1} ,\ \ | d X _ \omega | \leq N _ {2} . $$

The form $ \omega $ and the cochain $ X $ are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in $ R $, and comprise the flat representative.

There is a one-to-one correspondence between the $ n $-dimensional flat cochains $ X $ and the classes of equivalent bounded measurable functions $ \phi ( p) $, given by $ \omega _ {X} = \phi ( p) dp $, and

$$ \phi ( p) = \ \lim\limits _ {i \rightarrow \infty } \ \frac{X \sigma _ {i} }{| \sigma _ {i} | } , $$

where $ \sigma _ {1} , \sigma _ {2} ,\dots $ is a sequence of $ n $- dimensional simplices contracting towards the point $ p $ such that their diameters tend to zero, but such that

$$ \frac{| \sigma _ {i} | }{( \mathop{\rm diam} \sigma _ {i} ) ^ {n} } \geq \eta $$

for some value of $ \eta $, where $ | \sigma _ {i} | $ is the volume $ \sigma _ {i} $ for all $ i $.

Let $ \alpha ( p) $ be a measurable summable function in $ R $ whose values are $ r $- vectors; it is said to correspond to an $ r $- dimensional flat chain if

$$ \tag{2 } \int\limits _ { R } \omega _ {X} \cdot \alpha = X \cdot A $$

for all $ r $- dimensional flat cochains $ X $ ($ A $ is then called a Lebesgue chain). The mapping $ \alpha \rightarrow A $ is a linear one-to-one mapping of the set of equivalence classes of functions $ \alpha ( p) $ into the space of flat chains $ C _ {r} ^ \flat ( R) $; also, $ | A | = \int _ {R} | \alpha | _ {0} $, where $ | A | $ is the mass of the chain $ A $, (cf. Mass and co-mass) and $ | \alpha | _ {0} $ is the mass of the $ r $-vector $ \alpha ( p) $. In addition, the set of images of continuous functions $ \alpha $ is dense in $ C _ {r} ^ \flat ( R) $.

Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. Sharp form); for instance, the differential of the flat form $ \omega _ {X} $, defined by the formula $ d \omega _ {X} = \omega _ {dX _ \omega } $, is also a flat form, and Stokes' theorem: $ \int _ {\partial \sigma } \omega = \int _ \sigma d \omega $ is valid for any simplex $ \sigma $; an $ r $- dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms $ \omega $ are smooth, etc.

References

[1] H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)
How to Cite This Entry:
Flat form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Flat_form&oldid=18201
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article