Namespaces
Variants
Actions

Favard problem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The problem of calculating the least upper bound

$$ \tag{* } \sup _ {\begin{array}{c} {} \\ f \in W ^ {r} MX \end{array} } \ \inf _ {t _ {n} } \ \| f ( x) - t _ {n} ( x) \| _ {X} , $$

where the $ t _ {n} ( x) $ are trigonometric polynomials of order not exceeding $ n $, $ W ^ {r} MX $ is the class of periodic functions whose $ r $- th derivative in the sense of Weyl (see Fractional integration and differentiation) satisfies the inequality $ \| f ^ { ( r) } \| _ {X} \leq M $, and $ X = C [ 0, 2 \pi ] $. The Favard problem was posed by J. Favard [1]. Subsequently, broader classes of functions have been considered and a complete solution of the Favard problem for $ X = C, L $ and arbitrary $ r > 0 $ has been obtained as a corollary of more general results (see [2], [3]).

References

[1] J. Favard, "Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynômes trigonométriques" Bull. Sci. Math. , 61 (1937) pp. 209–224
[2] S.B. Stechkin, "On best approximation of certain classes of periodic functions by trigonometric functions" Izv. Akad. Nauk SSSR Ser. Mat. , 20 : 5 (1956) pp. 643–648 (In Russian)
[3] V.K. Dzyadyk, "Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions" Izv. Akad. Nauk SSSR Ser. Mat. , 23 : 6 (1959) pp. 933–950 (In Russian)
[4] N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)

Comments

References

[a1] R.P. Feinerman, D.J. Newman, "Polynomial approximation" , Williams & Wilkins pp. Chapt. IV.4
How to Cite This Entry:
Favard problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Favard_problem&oldid=46907
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article