Namespaces
Variants
Actions

Difference between revisions of "Fabry theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
Fabry's gap theorem: If the exponents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380301.png" /> in the power series
+
==Fabry's gap theorem==
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380302.png" /></td> </tr></table>
+
If the exponents $\lambda_n$ in the power series
  
with radius of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380303.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380304.png" />, satisfy the condition
+
$$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380305.png" /></td> </tr></table>
+
with radius of convergence $R$, $0<R<\infty$, satisfy the condition
  
then all points of the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380306.png" /> are singular points for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380307.png" />. The theorem can be generalized to Dirichlet series.
+
$$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$
  
Fabry's quotient theorem: If the coefficients in the power series
+
then all points of the circle $\lvert z\rvert=R$ are singular points for $f(z)$. The theorem can be generalized to Dirichlet series.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380308.png" /></td> </tr></table>
+
==Fabry's quotient theorem==
  
with unit radius of convergence, satisfy the condition
+
If the coefficients in the power series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f0380309.png" /></td> </tr></table>
+
$$ f(z)=\sum_{n=0}^\infty a_nz^n,$$
 
 
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f03803010.png" /> is a singular point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038030/f03803011.png" />.
 
 
 
Theorems 1) and 2) were obtained by E. Fabry [[#References|[1]]].
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Fabry,  "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux"  ''Ann. Sci. Ecole Norm. Sup.'' , '''13'''  (1896) pp. 367–399</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Bieberbach,  "Analytische Fortsetzung" , Springer  (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.F. Leont'ev,   "Exponential series" , Moscow  (1976)  (In Russian)</TD></TR></table>
 
  
 +
with unit radius of convergence, satisfy the condition
  
 +
$$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$
  
====Comments====
+
then $z=s$ is a singular point of $f(z)$.
  
 +
These theorems were obtained by E. Fabry {{Cite|Fa}}.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Landau,  "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Dienes,  "The Taylor series" , Oxford Univ. Press &amp; Dover  (1957)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Bi}}|| valign="top"| L. Bieberbach,  "Analytische Fortsetzung" , Springer (1955)
 +
|-
 +
|valign="top"|{{Ref|Di}}|| valign="top"| P. Dienes,  "The Taylor series" , Oxford Univ. Press &amp; Dover  (1957)
 +
|-
 +
|valign="top"|{{Ref|Fa}}|| valign="top"| E. Fabry,  "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux"  ''Ann. Sci. Ecole Norm. Sup.'' , '''13'''  (1896)  pp. 367–399
 +
|-
 +
|valign="top"|{{Ref|Le}}|| valign="top"|  A.F. Leont'ev,  "Exponential series" , Moscow  (1976)  (In Russian)
 +
|valign="top"|{{Ref|La}}|| valign="top"|  E. Landau,  "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint  (1973)
 +
|-
 +
|}

Revision as of 06:22, 22 April 2012

Fabry's gap theorem

If the exponents $\lambda_n$ in the power series

$$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$

with radius of convergence $R$, $0<R<\infty$, satisfy the condition

$$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$

then all points of the circle $\lvert z\rvert=R$ are singular points for $f(z)$. The theorem can be generalized to Dirichlet series.

Fabry's quotient theorem

If the coefficients in the power series

$$ f(z)=\sum_{n=0}^\infty a_nz^n,$$

with unit radius of convergence, satisfy the condition

$$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$

then $z=s$ is a singular point of $f(z)$.

These theorems were obtained by E. Fabry [Fa].

References

[Bi] L. Bieberbach, "Analytische Fortsetzung" , Springer (1955)
[Di] P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957)
[Fa] E. Fabry, "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" Ann. Sci. Ecole Norm. Sup. , 13 (1896) pp. 367–399
[Le] A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) [La] E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973)
How to Cite This Entry:
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=24999
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article