# Euler formulas

From Encyclopedia of Mathematics

Formulas connecting the exponential and trigonometric functions:

These hold for all values of the complex variable . In particular, for a real value the Euler formulas become

These formulas were published by L. Euler in [1].

#### References

[1] | L. Euler, Miscellanea Berolinensia , 7 (1743) pp. 193–242 |

[2] | L. Euler, "Einleitung in die Analysis des Unendlichen" , Springer (1983) (Translated from Latin) |

[3] | A.I. Markushevich, "A short course on the theory of analytic functions" , Moscow (1978) (In Russian) |

#### Comments

#### References

[a1] | K.R. Stromberg, "An introduction to classical real analysis" , Wadsworth (1981) |

**How to Cite This Entry:**

Euler formulas.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Euler_formulas&oldid=14630

This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article