Namespaces
Variants
Actions

Euclidean prime number theorem

From Encyclopedia of Mathematics
Revision as of 16:56, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The set of prime numbers is infinite (Euclid's Elements, Book IX, Prop. 20). The Chebyshev theorems on prime numbers and the asymptotic law of the distribution of prime numbers provide more precise information on the set of prime numbers in the series of natural numbers.


Comments

The proof of the Euclidean theorem is simple. Suppose there exist only finitely many prime numbers . Consider the number . Since it must be divisible by a prime number , which equals some due to the finiteness of the amount of prime numbers. Hence divides , and thus divides 1. This contradiction shows that there must be infinitely many prime numbers.

How to Cite This Entry:
Euclidean prime number theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euclidean_prime_number_theorem&oldid=11641
This article was adapted from an original article by S.M. Voronin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article