Namespaces
Variants
Actions

Etale topology

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The most important example of a Grothendieck topology (see Topologized category), making it possible to define cohomology and homotopy invariants for abstract algebraic varieties and schemes. Let $X$ be a scheme. The étale topology on $X$ is the name for the category $X_{\text{et}}$ of étale $X$-schemes the objects of which are étale morphisms (cf. Etale morphism) $U \to X$ and the morphisms of which are those of the $X$-schemes. Finite families $\left({f_i:U_i\to U}\right)$ such that $U = \cup_i f_i[U_i]$ are taken as coverings and so in $X_{\text{et}}$ a topology is introduced.

A pre-sheaf of sets (groups, Abelian groups, etc.) on $X_{\text{et}}$ is defined as a contravariant functor $\mathcal{F}$ from the category $X_{\text{et}}$ into that of sets (groups, etc.). A pre-sheaf $\mathcal{F}$ is called a sheaf if for any covering $\left({f_i:U_i\to U}\right)$ a section $s \in \mathcal{F}(U)$ is determined by its restriction to $U_i$ and if for any compatible collection of sections $s_i \in \mathcal{F}(U_i)$ there exists a unique section $s \in \mathcal{F}(U)$ such that $F_i^*(s) = S_i$. Many standard concepts of sheaf theory carry over to étale sheaves (that is, sheaves on $X_{\text{et}}$). For example, if $f : X \to Y$ is a morphism of schemes and $\mathcal{F}$ is an étale sheaf on $X$, then by putting $$ (f * \mathcal{F})(V) = \mathcal{F}(X \times_Y V) $$ one obtains the so-called direct image $f*\mathcal{F}$ of $\mathcal{F}$ for the morphism $f$. The functor $f^*$ adjoint to $f*$ on the left is called the inverse-image functor. In particular, the stalk of $\mathcal{F}$ at a geometric point $\eta : \mathrm{Spec}(F) \to X$ (where $K$ is an algebraically closed field) is defined as the set $\mathcal{F}_\eta = \eta^*\mathcal{F}(\mathrm{Spec}(K))$.

An important example of a sheaf on $X_{\text{et}}$ is $\mathcal{F}_Z$, representable by a certain $X$-scheme $Z$; for it $\mathcal{F}_Z(U) = \mathrm{Hom}_X(U,Z)$. If $Z$ is a finite étale $X$-scheme, then the sheaf $\mathcal{F}_Z$ is called locally constant. A sheaf $F$ is said to be constructible if there exists a finite partition of $X$ into locally closed subschemes $X_i$ such that the restriction $\mathcal{F}|_{X_i}$ is locally constant on every $X_i$.

See also Etale cohomology; Homotopy type of a topological category.

References

[1] Yu.I. Manin, "Algebraic topology of algebraic varieties" Russian Math. Surveys , 20 : 5/6 (1965) pp. 183–192 Uspekhi Mat. Nauk , 20 : 6 (1965) pp. 3–12
[2] J.S. Milne, "Etale cohomology" , Princeton Univ. Press (1980)
[3] M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schémas (SGA 4) , Lect. notes in math. , 269; 270; 305 , Springer (1972–1973)
[4] P. Deligne, "Cohomologie étale (SGA 4 1/2)" , Lect. notes in math. , 569 , Springer (1977)
How to Cite This Entry:
Etale topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Etale_topology&oldid=41609
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article