Namespaces
Variants
Actions

Difference between revisions of "Enumeration operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358101.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358102.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358103.png" /> is the set of natural numbers), defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358104.png" /> be a recursively-enumerable set having Gödel number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358105.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358106.png" /> be a finite set of natural numbers with canonical index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358107.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e0358109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581010.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581011.png" /> be the number of the ordered pair consisting of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581013.png" /> for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581014.png" /> yields a procedure that transforms any given set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581015.png" /> into the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581016.png" /> of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581017.png" /> with the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581018.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581019.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581020.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581021.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581022.png" /> and if the finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581023.png" /> is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581025.png" /> is related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581026.png" />. In other words,
+
<!--
 +
e0358101.png
 +
$#A+1 = 49 n = 0
 +
$#C+1 = 49 : ~/encyclopedia/old_files/data/E035/E.0305810 Enumeration operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581027.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
This procedure enables one to obtain effectively from any enumeration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581028.png" /> an enumeration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581029.png" />. It is called an enumeration operator and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581031.png" /> for some enumeration operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581032.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581033.png" /> is reducible in enumerability to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581034.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581035.png" />).
+
A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of  $  2  ^ {\mathbf N} $
 +
into  $  2  ^ {\mathbf N} $,
 +
where  $  \mathbf N $
 +
is the set of natural numbers), defined as follows. Let  $  W _ {z} $
 +
be a recursively-enumerable set having Gödel number  $  z $,
 +
let  $  D _ {u} $
 +
be a finite set of natural numbers with canonical index  $  u $(
 +
i.e. $  D _ {u} = \{ x _ {1} \dots x _ {n} \} $,
 +
where  $  x _ {1} < \dots < x _ {n} $
 +
and  $  2 ^ {x _ {1} } + \dots + 2 ^ {x _ {n} } = u $)
 +
and let  $  \langle  x, u \rangle $
 +
be the number of the ordered pair consisting of the numbers  $  x $
 +
and  $  u $
 +
for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set  $  W _ {z} $
 +
yields a procedure that transforms any given set of natural numbers  $  B $
 +
into the set  $  A $
 +
of natural numbers  $  x $
 +
with the property that  $  \langle  x , u \rangle \in W _ {z} $
 +
for some $  u $
 +
with  $  D _ {u} \subset  B $,
 +
i.e. $  \langle  x, u\rangle $
 +
belongs to  $  W _ {z} $
 +
and if the finite set  $  D _ {u} $
 +
is contained in $  B $,
 +
then  $  x $
 +
is related to $  A $.  
 +
In other words,
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581037.png" /> are enumeration operators, their composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png" /> is also an enumeration operator. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581039.png" /> is an enumeration operator and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581043.png" /> for some finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581044.png" />. Each enumeration operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581045.png" /> has a least fixed point, i.e. there exists a recursively-enumerable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581046.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581048.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581049.png" />.
+
$$
 +
= \{ {x } : {( \exists  u)(\langle  x, u\rangle \in W _ {z} \wedge D _ {u} \subseteq B) } \}
 +
.
 +
$$
 +
 
 +
This procedure enables one to obtain effectively from any enumeration on  $  B $
 +
an enumeration on  $  A $.  
 +
It is called an enumeration operator and is denoted by  $  \Phi _ {z} $.  
 +
If  $  \Psi ( B) = A $
 +
for some enumeration operator  $  \Psi $,
 +
one says that  $  A $
 +
is reducible in enumerability to  $  B $(
 +
$  A \leq  _ {e} B $).
 +
 
 +
If  $  \Phi $
 +
and  $  \Psi $
 +
are enumeration operators, their composite $  \Phi \Psi $
 +
is also an enumeration operator. If $  \Psi $
 +
is an enumeration operator and $  B _ {1} \subseteq B $,  
 +
then $  \Psi ( B _ {1} ) \subseteq \Psi ( B) $.  
 +
If $  x \in \Psi ( B _ {1} ) $,  
 +
then $  x \in \Psi ( D) $
 +
for some finite set $  D \subseteq B _ {1} $.  
 +
Each enumeration operator $  \Psi $
 +
has a least fixed point, i.e. there exists a recursively-enumerable set $  A $
 +
such that $  \Psi ( A) = A $,  
 +
and if $  \Psi ( B) = B $,  
 +
then $  A \subseteq B $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Rogers jr.,  "Theory of recursive functions and effective computability" , McGraw-Hill  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Rogers jr.,  "Theory of recursive functions and effective computability" , McGraw-Hill  (1967)</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


A mapping of the set of all sets of natural numbers into itself (i.e. a mapping of $ 2 ^ {\mathbf N} $ into $ 2 ^ {\mathbf N} $, where $ \mathbf N $ is the set of natural numbers), defined as follows. Let $ W _ {z} $ be a recursively-enumerable set having Gödel number $ z $, let $ D _ {u} $ be a finite set of natural numbers with canonical index $ u $( i.e. $ D _ {u} = \{ x _ {1} \dots x _ {n} \} $, where $ x _ {1} < \dots < x _ {n} $ and $ 2 ^ {x _ {1} } + \dots + 2 ^ {x _ {n} } = u $) and let $ \langle x, u \rangle $ be the number of the ordered pair consisting of the numbers $ x $ and $ u $ for a certain specified one-to-one recursive encoding of the pairs. Each recursively-enumerable set $ W _ {z} $ yields a procedure that transforms any given set of natural numbers $ B $ into the set $ A $ of natural numbers $ x $ with the property that $ \langle x , u \rangle \in W _ {z} $ for some $ u $ with $ D _ {u} \subset B $, i.e. $ \langle x, u\rangle $ belongs to $ W _ {z} $ and if the finite set $ D _ {u} $ is contained in $ B $, then $ x $ is related to $ A $. In other words,

$$ A = \{ {x } : {( \exists u)(\langle x, u\rangle \in W _ {z} \wedge D _ {u} \subseteq B) } \} . $$

This procedure enables one to obtain effectively from any enumeration on $ B $ an enumeration on $ A $. It is called an enumeration operator and is denoted by $ \Phi _ {z} $. If $ \Psi ( B) = A $ for some enumeration operator $ \Psi $, one says that $ A $ is reducible in enumerability to $ B $( $ A \leq _ {e} B $).

If $ \Phi $ and $ \Psi $ are enumeration operators, their composite $ \Phi \Psi $ is also an enumeration operator. If $ \Psi $ is an enumeration operator and $ B _ {1} \subseteq B $, then $ \Psi ( B _ {1} ) \subseteq \Psi ( B) $. If $ x \in \Psi ( B _ {1} ) $, then $ x \in \Psi ( D) $ for some finite set $ D \subseteq B _ {1} $. Each enumeration operator $ \Psi $ has a least fixed point, i.e. there exists a recursively-enumerable set $ A $ such that $ \Psi ( A) = A $, and if $ \Psi ( B) = B $, then $ A \subseteq B $.

References

[1] H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967)
How to Cite This Entry:
Enumeration operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Enumeration_operator&oldid=14496
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article