Namespaces
Variants
Actions

Difference between revisions of "Eilenberg-MacLane space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(No difference)

Revision as of 20:51, 24 March 2012

A space, denoted by , representing the functor , where is a non-negative number, is a group which is commutative for and is the -dimensional cohomology group of a cellular space with coefficients in . It exists for any such and .

The Eilenberg–MacLane space can also be characterized by the condition: for and for , where is the -th homotopy group. Thus, is uniquely defined up to a weak homotopy equivalence. An arbitrary topological space can, up to a weak homotopy equivalence, be decomposed into a twisted product of Eilenberg–MacLane spaces (see Postnikov system). The cohomology groups of coincide with those of . Eilenberg–MacLane spaces were introduced by S. Eilenberg and S. MacLane .

References

[1a] S. Eilenberg, S. MacLane, "Relations between homology and homotopy groups of spaces" Ann. of Math. , 46 (1945) pp. 480–509
[1b] S. Eilenberg, S. MacLane, "Relations between homology and homotopy groups of spaces. II" Ann. of Math. , 51 (1950) pp. 514–533
[2] R.E. Mosher, M.C. Tangora, "Cohomology operations and applications in homotopy theory" , Harper & Row (1968)
[4] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
How to Cite This Entry:
Eilenberg-MacLane space. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Eilenberg-MacLane_space&oldid=16373
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article