Namespaces
Variants
Actions

Edmonds matrix

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 05C50 Secondary: 05C70 [MSN][ZBL]

In graph theory, the Edmonds matrix $A$ of a balanced bipartite graph $G = (V,E)$ is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. Suppose that the vertex set $V = A \cup B$ where $A = \{a_1,\ldots,a_n\}$ and $B = \{b_1,\ldots,b_n\}$ .

The Edmonds matrix is an $n \times n$ matrix $A$ with entries $$ A_{ij} = \begin{cases} x_{ij}\;\;\mbox{if}\;(a_i,b_j) \in E \\ 0\;\;\;\;\mbox{otherwise} \end{cases} $$ where the $x_{ij}$ are indeterminates. The determinant of this matrix is then a polynomial in the variables $x_{ij}$ and is non-zero (as a polynomial) if and only if a perfect matching exists.

The Tutte matrix is a generalisation of the Edmonds matrix to a general graph.

References

  • Rajeev Motwani, Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press (1995) ISBN 978-0-521-47465-8 Zbl 0849.68039
  • Allen B. Tucker, "Computer Science Handbook", 2nd ed. CRC Press (2004) ISBN 158488360X
How to Cite This Entry:
Edmonds matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Edmonds_matrix&oldid=54444