Namespaces
Variants
Actions

Disjoint union

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 03E [MSN][ZBL]

discriminated union, sum

A construction in set theory corresponding to the coproduct, the union of disjoint "copies" of sets in a family. Let $X_\lambda$ be a family of sets indexed by $\lambda \in \Lambda$. The disjoint union $Y = \coprod_{\lambda \in \Lambda} X_\lambda$ has a universal property: there are maps $i_\lambda : X_\lambda \rightarrow Y$ such that for any family of maps $f_\lambda : X_\lambda \rightarrow Z$ for some $Z$ and all $\lambda \in \Lambda$, there is a map $F : \coprod_{\lambda \in \Lambda} X_\lambda \rightarrow Z$ such that $i_\lambda \circ F = f_\lambda$.

If the $X_\lambda$ are mutually disjoint, so that $\lambda \neq \mu \Rightarrow X_\lambda \cap X_\mu = \emptyset$, then their union $Y = \bigcup_{\lambda \in \Lambda} X_\lambda$ is said to be the (internal) disjoint union of the $X_\lambda$: one also says that the $X_\lambda$ form a partition or decomposition of $Y$. The $i_\lambda$ are the inclusion maps of the $X_\lambda$ into $Y$.

More generally, we may construct a disjoint union given any family $X_\lambda$ as follows. Let $Y' = \bigcup_{\lambda \in \Lambda} X_\lambda$ and define maps $i_\lambda : X_\lambda \rightarrow Y' \times \Lambda$ by $i_\lambda : x \mapsto (x,\lambda)$. Then each $i_\lambda$ is an injection, the images of the $i_\lambda$ are disjoint, and $Y = \bigcup_{\lambda \in \Lambda} \mathrm{im}(i_\lambda)$ is the (external) disjoint union of the $X_\lambda$.

A bouquet or wedge is a disjoint union of pointed sets. It has the same universal property with respective to pointed maps. There is a similar explicit construction.

References

[1] P. R. Halmos, Naive Set Theory, Undergraduate Texts in Mathematics, Springer (1960) ISBN 0-387-90092-6
[2] Tammo tom Dieck, Algebraic Topology, European Mathematical Society (2008) ISBN 3037190485
How to Cite This Entry:
Disjoint union. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Disjoint_union&oldid=54598