Namespaces
Variants
Actions

Difference between revisions of "Differential equation, partial, Fischer-Riesz (Picone) method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
d0319701.png
 +
$#A+1 = 70 n = 0
 +
$#C+1 = 70 : ~/encyclopedia/old_files/data/D031/D.0301970 Differential equation, partial, Fischer\ANDRiesz (Picone) method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method for solving boundary value problems of partial differential equations based on the use of the Green formula and leading to a system of (Fischer–Riesz) integral equations for some suitably chosen unknown vector. The method may be used to find numerical values of solutions, but may also be employed in proving existence theorems.
 
A method for solving boundary value problems of partial differential equations based on the use of the Green formula and leading to a system of (Fischer–Riesz) integral equations for some suitably chosen unknown vector. The method may be used to find numerical values of solutions, but may also be employed in proving existence theorems.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319701.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319702.png" /> be adjoint linear elliptic operators of the second order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319703.png" /> with real coefficients
+
Let $  L  ^ {*} $
 +
and $  L $
 +
be adjoint linear elliptic operators of the second order in $  \mathbf R  ^ {n} $
 +
with real coefficients
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319704.png" /></td> </tr></table>
+
$$
 +
a _ {ik}  \in  C ^ {( 2) } ( D) \cap C ^ {( 1) } ( D \cup S ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319705.png" /></td> </tr></table>
+
$$
 +
b _ {i}  \in  C ^ {( 1) } ( D \cup S ) ,\  c , f \in C ^ {( 0) } ( D \cup S ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319706.png" /> is the bounded domain bounded by a closed surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319707.png" />. Let the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319708.png" /> of the Dirichlet problem
+
where $  D $
 +
is the bounded domain bounded by a closed surface $  S $.  
 +
Let the solution $  u $
 +
of the Dirichlet problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d0319709.png" /></td> </tr></table>
+
$$
 +
L u ( x)  = f ( x) ,\  x \in D ,\  \lim\limits _ {x \rightarrow y
 +
\in S }  u ( x)  = \phi ( y) ,
 +
$$
  
be sought in the class of functions permitting an integral representation according to Green's formulas. Furthermore, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197010.png" /> be an arbitrary function in the same class. Application of the Green formula to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197012.png" /> yields
+
be sought in the class of functions permitting an integral representation according to Green's formulas. Furthermore, let $  v $
 +
be an arbitrary function in the same class. Application of the Green formula to $  u $
 +
and $  v $
 +
yields
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
- \int\limits _ { D } u ( x) L  ^ {*} v ( x)  d x =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197014.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ { S } \left [ \phi ( y) \left (
 +
\frac{\partial  v }{\partial  \nu }
 +
-
 +
A v \right ) - v
 +
\frac{\partial  u }{\partial  \nu }
 +
\right ]  dy - \int\limits _ { D } f ( x) v ( x)  d x ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197015.png" /></td> </tr></table>
+
$$
 +
= \sum _ { i } \cos ( n , x _ {i} )
 +
\left ( b _ {i} - \sum _ { k }
 +
 
 +
\frac{\partial  a _ {ik} }{\partial  x _ {k} }
 +
\right ) ,
 +
$$
 +
 
 +
$  n $
 +
is a normal on  $  S $
 +
and  $  \nu $
 +
is the interior conormal. Let  $  U = ( u _ {1} , u _ {2} ) $
 +
be a vector with two components, composed of real-valued square-integrable functions, the first component being defined in  $  D $,
 +
while the second is defined on  $  S $.
 +
Let  $  L _ {2} ( D , S ) $
 +
be the set of these vectors; a norm is introduced by way of the scalar product of  $  U $
 +
and  $  V $
 +
in  $  L _ {2} ( D , S ) $:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197016.png" /> is a normal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197018.png" /> is the interior conormal. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197019.png" /> be a vector with two components, composed of real-valued square-integrable functions, the first component being defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197020.png" />, while the second is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197021.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197022.png" /> be the set of these vectors; a norm is introduced by way of the scalar product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197025.png" />:
+
$$
 +
( U , V )  = \int\limits _ { D } u _ {1} v _ {1}  d x + \int\limits _ { S }
 +
u _ {2} v _ {2}  d y .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197026.png" /></td> </tr></table>
+
Let  $  \{ v _ {k} \} $
 +
be a set which has been so chosen that the totality of vectors with two components
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197027.png" /> be a set which has been so chosen that the totality of vectors with two components
+
$$
 +
V _ {k}  = ( - L  ^ {*} v _ {k} ( x) , v _ {k} ( y) ) ,\ \
 +
x \in D ,\  y \in S ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197028.png" /></td> </tr></table>
+
is dense in the Hilbert space  $  L _ {2} ( D , S ) $.
 +
Then, if one denotes by  $  U = ( u _ {1} , u _ {2} ) $
 +
the vector with first component  $  u _ {1} $
 +
equal to  $  u $,
 +
and second component  $  u _ {2} $
 +
coinciding with  $  \partial  u / \partial  \nu $,
 +
one may write (1) as a Fischer–Riesz system of integral equations:
  
is dense in the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197029.png" />. Then, if one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197030.png" /> the vector with first component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197031.png" /> equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197032.png" />, and second component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197033.png" /> coinciding with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197034.png" />, one may write (1) as a Fischer–Riesz system of integral equations:
+
$$ \tag{2 }
 +
( U , V _ {k} )  = \int\limits _ { S } \phi ( y) \left (
 +
\frac{\partial  v _ {k} }{\partial  \nu }
 +
- A v _ {k} \right )  dy - \int\limits _ { D } f v _ {k}  d x .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
If the set  $  \{ V _ {k} \} $
 +
is orthonormal and if the conditions of the [[Riesz–Fischer theorem|Riesz–Fischer theorem]] are satisfied, (2) defines, in  $  L _ {2} ( D , S ) $,
 +
the Fourier coefficients  $  c _ {k} $
 +
of the vector  $  U = ( u _ {1} , u _ {2} ) $
 +
with respect to the maximal system of basis vectors  $  \{ V _ {k} \} $.
 +
If it is known that the problem under consideration has a solution  $  v $
 +
and that this solution is unique, the Fourier series  $  \sum _ {k} c _ {k} V _ {k} $
 +
converges in the mean to  $  v $
 +
and only to  $  v $.
 +
Otherwise the selection of functions  $  \{ v _ {k} \} $
 +
must be further studied. E.g., if eigen solutions  $  u _ {0} $
 +
are permitted (that is, the solution is no longer unique), the set  $  \{ V _ {k} \} $
 +
must satisfy:
  
If the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197036.png" /> is orthonormal and if the conditions of the [[Riesz–Fischer theorem|Riesz–Fischer theorem]] are satisfied, (2) defines, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197037.png" />, the Fourier coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197038.png" /> of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197039.png" /> with respect to the maximal system of basis vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197040.png" />. If it is known that the problem under consideration has a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197041.png" /> and that this solution is unique, the Fourier series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197042.png" /> converges in the mean to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197043.png" /> and only to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197044.png" />. Otherwise the selection of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197045.png" /> must be further studied. E.g., if eigen solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197046.png" /> are permitted (that is, the solution is no longer unique), the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197047.png" /> must satisfy:
+
$$
 +
( U _ {0} , V _ {k} ) = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197048.png" /></td> </tr></table>
+
where  $  U _ {0} = ( u _ {0} ( x) , \partial  u _ {0} / \partial  \nu ) $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197049.png" />.
+
If a sequence of monomials  $  x _ {1} ^ {\alpha _ {1} } \dots x _ {m} ^ {\alpha _ {m} } $
 +
with integral non-negative exponents  $  \alpha _ {1} \dots \alpha _ {m} $
 +
is taken as  $  \{ v _ {k} \} $,
 +
then the values of  $  u $
 +
and  $  \partial  u / \partial  \nu $
 +
found by (2), together with the value of  $  u $
 +
given on  $  S $,
 +
satisfy the Green functional relations
  
If a sequence of monomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197050.png" /> with integral non-negative exponents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197051.png" /> is taken as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197052.png" />, then the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197054.png" /> found by (2), together with the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197055.png" /> given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197056.png" />, satisfy the Green functional relations
+
$$
 +
\delta ( x) k _ {m} u ( x) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197057.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ { S } \left [ u ( y) \left (
 +
\frac{\partial  w ( y , x )
 +
}{\partial  \nu }
 +
- A ( y) w ( y , x ) \right ) - w
 +
( y , x )
 +
\frac{\partial  u }{\partial  \nu }
 +
\right ]  d y +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197058.png" /></td> </tr></table>
+
$$
 +
- \int\limits _ { D } f w ( y , x )  d y ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197059.png" /></td> </tr></table>
+
$$
 +
\delta ( x)  = \left \{
 +
\begin{array}{ll}
 +
1 ,  & x \in D ,  \\
 +
0,  & x \notin D \cup S ,  \\
 +
\end{array}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197060.png" /></td> </tr></table>
+
\right .$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197061.png" /> is a non-zero constant which depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197062.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197063.png" /> is a fundamental solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197064.png" />. In such a case all solutions of the Fischer–Riesz system of equations, and only such solutions, are solutions of the boundary value problem under study. The essence of this method is a suitable construction of the selected set of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197065.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197066.png" /> or certain completeness conditions [[#References|[4]]].
+
where $  k _ {m} $
 +
is a non-zero constant which depends on $  m $,  
 +
and $  w $
 +
is a fundamental solution of the equation $  L  ^ {*} v = 0 $.  
 +
In such a case all solutions of the Fischer–Riesz system of equations, and only such solutions, are solutions of the boundary value problem under study. The essence of this method is a suitable construction of the selected set of functions $  \{ v _ {n} \} $
 +
satisfying the condition $  L  ^ {*} v _ {n} = 0 $
 +
or certain completeness conditions [[#References|[4]]].
  
In this method, an explicit expression for the fundamental solution need not be specified, but if it is known, the calculations may be considerably simplified in view of the fact that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197067.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197068.png" /> is a countably infinite sequence of arbitrary points not forming part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197069.png" />, is linearly independent and is complete in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031970/d03197070.png" /> [[#References|[4]]]; this theorem also makes it possible to extend the method of Fischer–Riesz equations to problems with oblique derivatives (cf. [[Differential equation, partial, oblique derivatives|Differential equation, partial, oblique derivatives]]) and other types of equations.
+
In this method, an explicit expression for the fundamental solution need not be specified, but if it is known, the calculations may be considerably simplified in view of the fact that the set $  \{ w ( y , x ^ {( k) } ) \} $,
 +
where $  x ^ {( k) } $
 +
is a countably infinite sequence of arbitrary points not forming part of $  D \cup S $,  
 +
is linearly independent and is complete in $  L _ {2} ( S) $[[#References|[4]]]; this theorem also makes it possible to extend the method of Fischer–Riesz equations to problems with oblique derivatives (cf. [[Differential equation, partial, oblique derivatives|Differential equation, partial, oblique derivatives]]) and other types of equations.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Picone,  "Nuovi metodi resolutivi per i problemi d'integrazzione delle equazioni lineari a derivative parziali e nuova applicazione della trasformata multipla di Laplace nel caso delle equazioni a coefficienti constanti"  ''Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur.'' , '''75'''  (1940)  pp. 413–426</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Amerio,  "Sul calcolo delle soluzioni dei problemi al contorno per le equazioni lineari de secondo ordine di tipo ellittico"  ''Amer. J. Math.'' , '''69''' :  3  (1947)  pp. 447–489</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Fichera,  "Sull' esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all'equilibrio di un corpo elastico"  ''Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.'' , '''4''' :  1–2  (1950)  pp. 35–99</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.D. Kupradze,  "On the approximate solution of problems in mathematical physics"  ''Russian Math. Surveys'' , '''22''' :  2  (1967)  pp. 58–108  ''Uspekhi Mat. Nauk'' , '''22''' :  2  (1967)  pp. 59–107</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C. Miranda,  "Partial differential equations of elliptic type" , Springer  (1970)  (Translated from Italian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Picone,  "Nuovi metodi resolutivi per i problemi d'integrazzione delle equazioni lineari a derivative parziali e nuova applicazione della trasformata multipla di Laplace nel caso delle equazioni a coefficienti constanti"  ''Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur.'' , '''75'''  (1940)  pp. 413–426</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Amerio,  "Sul calcolo delle soluzioni dei problemi al contorno per le equazioni lineari de secondo ordine di tipo ellittico"  ''Amer. J. Math.'' , '''69''' :  3  (1947)  pp. 447–489</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Fichera,  "Sull' esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all'equilibrio di un corpo elastico"  ''Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.'' , '''4''' :  1–2  (1950)  pp. 35–99</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.D. Kupradze,  "On the approximate solution of problems in mathematical physics"  ''Russian Math. Surveys'' , '''22''' :  2  (1967)  pp. 58–108  ''Uspekhi Mat. Nauk'' , '''22''' :  2  (1967)  pp. 59–107</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C. Miranda,  "Partial differential equations of elliptic type" , Springer  (1970)  (Translated from Italian)</TD></TR></table>

Latest revision as of 17:33, 5 June 2020


A method for solving boundary value problems of partial differential equations based on the use of the Green formula and leading to a system of (Fischer–Riesz) integral equations for some suitably chosen unknown vector. The method may be used to find numerical values of solutions, but may also be employed in proving existence theorems.

Let $ L ^ {*} $ and $ L $ be adjoint linear elliptic operators of the second order in $ \mathbf R ^ {n} $ with real coefficients

$$ a _ {ik} \in C ^ {( 2) } ( D) \cap C ^ {( 1) } ( D \cup S ) , $$

$$ b _ {i} \in C ^ {( 1) } ( D \cup S ) ,\ c , f \in C ^ {( 0) } ( D \cup S ) , $$

where $ D $ is the bounded domain bounded by a closed surface $ S $. Let the solution $ u $ of the Dirichlet problem

$$ L u ( x) = f ( x) ,\ x \in D ,\ \lim\limits _ {x \rightarrow y \in S } u ( x) = \phi ( y) , $$

be sought in the class of functions permitting an integral representation according to Green's formulas. Furthermore, let $ v $ be an arbitrary function in the same class. Application of the Green formula to $ u $ and $ v $ yields

$$ \tag{1 } - \int\limits _ { D } u ( x) L ^ {*} v ( x) d x = $$

$$ = \ \int\limits _ { S } \left [ \phi ( y) \left ( \frac{\partial v }{\partial \nu } - A v \right ) - v \frac{\partial u }{\partial \nu } \right ] dy - \int\limits _ { D } f ( x) v ( x) d x , $$

where

$$ A = \sum _ { i } \cos ( n , x _ {i} ) \left ( b _ {i} - \sum _ { k } \frac{\partial a _ {ik} }{\partial x _ {k} } \right ) , $$

$ n $ is a normal on $ S $ and $ \nu $ is the interior conormal. Let $ U = ( u _ {1} , u _ {2} ) $ be a vector with two components, composed of real-valued square-integrable functions, the first component being defined in $ D $, while the second is defined on $ S $. Let $ L _ {2} ( D , S ) $ be the set of these vectors; a norm is introduced by way of the scalar product of $ U $ and $ V $ in $ L _ {2} ( D , S ) $:

$$ ( U , V ) = \int\limits _ { D } u _ {1} v _ {1} d x + \int\limits _ { S } u _ {2} v _ {2} d y . $$

Let $ \{ v _ {k} \} $ be a set which has been so chosen that the totality of vectors with two components

$$ V _ {k} = ( - L ^ {*} v _ {k} ( x) , v _ {k} ( y) ) ,\ \ x \in D ,\ y \in S , $$

is dense in the Hilbert space $ L _ {2} ( D , S ) $. Then, if one denotes by $ U = ( u _ {1} , u _ {2} ) $ the vector with first component $ u _ {1} $ equal to $ u $, and second component $ u _ {2} $ coinciding with $ \partial u / \partial \nu $, one may write (1) as a Fischer–Riesz system of integral equations:

$$ \tag{2 } ( U , V _ {k} ) = \int\limits _ { S } \phi ( y) \left ( \frac{\partial v _ {k} }{\partial \nu } - A v _ {k} \right ) dy - \int\limits _ { D } f v _ {k} d x . $$

If the set $ \{ V _ {k} \} $ is orthonormal and if the conditions of the Riesz–Fischer theorem are satisfied, (2) defines, in $ L _ {2} ( D , S ) $, the Fourier coefficients $ c _ {k} $ of the vector $ U = ( u _ {1} , u _ {2} ) $ with respect to the maximal system of basis vectors $ \{ V _ {k} \} $. If it is known that the problem under consideration has a solution $ v $ and that this solution is unique, the Fourier series $ \sum _ {k} c _ {k} V _ {k} $ converges in the mean to $ v $ and only to $ v $. Otherwise the selection of functions $ \{ v _ {k} \} $ must be further studied. E.g., if eigen solutions $ u _ {0} $ are permitted (that is, the solution is no longer unique), the set $ \{ V _ {k} \} $ must satisfy:

$$ ( U _ {0} , V _ {k} ) = 0 , $$

where $ U _ {0} = ( u _ {0} ( x) , \partial u _ {0} / \partial \nu ) $.

If a sequence of monomials $ x _ {1} ^ {\alpha _ {1} } \dots x _ {m} ^ {\alpha _ {m} } $ with integral non-negative exponents $ \alpha _ {1} \dots \alpha _ {m} $ is taken as $ \{ v _ {k} \} $, then the values of $ u $ and $ \partial u / \partial \nu $ found by (2), together with the value of $ u $ given on $ S $, satisfy the Green functional relations

$$ \delta ( x) k _ {m} u ( x) = $$

$$ = \ \int\limits _ { S } \left [ u ( y) \left ( \frac{\partial w ( y , x ) }{\partial \nu } - A ( y) w ( y , x ) \right ) - w ( y , x ) \frac{\partial u }{\partial \nu } \right ] d y + $$

$$ - \int\limits _ { D } f w ( y , x ) d y , $$

$$ \delta ( x) = \left \{ \begin{array}{ll} 1 , & x \in D , \\ 0, & x \notin D \cup S , \\ \end{array} \right .$$

where $ k _ {m} $ is a non-zero constant which depends on $ m $, and $ w $ is a fundamental solution of the equation $ L ^ {*} v = 0 $. In such a case all solutions of the Fischer–Riesz system of equations, and only such solutions, are solutions of the boundary value problem under study. The essence of this method is a suitable construction of the selected set of functions $ \{ v _ {n} \} $ satisfying the condition $ L ^ {*} v _ {n} = 0 $ or certain completeness conditions [4].

In this method, an explicit expression for the fundamental solution need not be specified, but if it is known, the calculations may be considerably simplified in view of the fact that the set $ \{ w ( y , x ^ {( k) } ) \} $, where $ x ^ {( k) } $ is a countably infinite sequence of arbitrary points not forming part of $ D \cup S $, is linearly independent and is complete in $ L _ {2} ( S) $[4]; this theorem also makes it possible to extend the method of Fischer–Riesz equations to problems with oblique derivatives (cf. Differential equation, partial, oblique derivatives) and other types of equations.

References

[1] M. Picone, "Nuovi metodi resolutivi per i problemi d'integrazzione delle equazioni lineari a derivative parziali e nuova applicazione della trasformata multipla di Laplace nel caso delle equazioni a coefficienti constanti" Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. , 75 (1940) pp. 413–426
[2] L. Amerio, "Sul calcolo delle soluzioni dei problemi al contorno per le equazioni lineari de secondo ordine di tipo ellittico" Amer. J. Math. , 69 : 3 (1947) pp. 447–489
[3] G. Fichera, "Sull' esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all'equilibrio di un corpo elastico" Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. , 4 : 1–2 (1950) pp. 35–99
[4] V.D. Kupradze, "On the approximate solution of problems in mathematical physics" Russian Math. Surveys , 22 : 2 (1967) pp. 58–108 Uspekhi Mat. Nauk , 22 : 2 (1967) pp. 59–107
[5] C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)
How to Cite This Entry:
Differential equation, partial, Fischer-Riesz (Picone) method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_equation,_partial,_Fischer-Riesz_(Picone)_method&oldid=16427
This article was adapted from an original article by V.D. Kupradze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article