Namespaces
Variants
Actions

Difference-element-in-K-theory

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An element of the group $ K ( X, A) $ (where $ ( X, A) $ is a pair of spaces and $ X $ is usually supposed to be a finite cellular space, while $ A $ is a cellular subspace of it), constructed from a triple $ ( \xi , \eta , \zeta ) $, where $ \xi $ and $ \eta $ are vector bundles of the same dimension over $ X $ and $ \zeta : \xi | _ {A} \rightarrow \eta | _ {A} $ is an isomorphism of vector bundles (here $ \sigma \mid _ {A} $ is the part of the vector bundle $ \sigma $ over $ X $ located above the subspace $ A $). The construction of a difference element can be carried out in the following way. First one supposes that $ \eta $ is the trivial bundle and that some trivialization of $ \eta $ over $ X $ is fixed. Then $ \zeta $ gives a trivialization of $ \xi \mid _ {A} $ and hence gives an element of the group $ \widetilde{K} ( X/A) = K ( X, A) $. This element is independent of the choice of the trivialization of $ \eta $ above all of $ X $. In the general case one chooses a bundle $ \sigma $ over $ X $ such that the bundle $ \eta \oplus \sigma $ is trivial, and the triple $ ( \xi , \eta , \zeta ) $ is assigned the same element as the triple $ ( \xi \oplus \sigma , \eta \oplus \sigma , \zeta \oplus \mathop{\rm id} \sigma ) $.

Comments

References

[a1] M.F. Atiyah, F. Hirzebruch, "Analytic cycles on complex manifolds" Topology , 1 (1961) pp. 28–45
[a2] M.F. Atiyah, R. Bott, A. Shapiro, "Clifford modules" Topology , 3. Suppl. 1 (1964) pp. 3–38
How to Cite This Entry:
Difference-element-in-K-theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Difference-element-in-K-theory&oldid=52381
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article