Namespaces
Variants
Actions

Difference between revisions of "Determinant variety"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The set of matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314201.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314202.png" /> and of a rank lower than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314203.png" />, with the structure of an algebraic variety. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314204.png" /> be the ideal in the ring of polynomials
+
<!--
 +
d0314201.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/D031/D.0301420 Determinant variety
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
with coefficients in a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314206.png" />, generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314207.png" />-order minors of the matrix of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314208.png" /> constituted by the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314209.png" /> (a determinant ideal). The set of zeros of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142010.png" /> in the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142011.png" /> is known as the determinant variety and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142012.png" />. For any commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142013.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142014.png" /> the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142015.png" />-points of the determinant variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142016.png" /> coincides, in a natural manner, with the set of matrices of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142017.png" /> and rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142018.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142019.png" />.
+
The set of matrices  $  D _ {t} ( d , n ) $
 +
of dimension d \times n $
 +
and of a rank lower than  $  t $,
 +
with the structure of an algebraic variety. Let  $  J _ {t} ( d , n ) $
 +
be the ideal in the ring of polynomials
  
The following are special cases of determinant varieties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142020.png" /> is the hypersurface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142021.png" /> defined by the vanishing of the determinant of a square matrix of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142022.png" /> consisting of independent variables (a determinant hypersurface); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142023.png" /> is an affine cone for the image of the Segre imbedding
+
$$
 +
k \left [ ( T _ {ij} ) _ {\begin{array} {l}
 +
1 \leq  i \leq  d
 +
\\
 +
1 \leq  j\leq  n
 +
\end{array}
 +
} \right ] ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142024.png" /></td> </tr></table>
+
with coefficients in a field  $  k $,
 +
generated by the  $  t $-
 +
order minors of the matrix of dimension  $  d \times n $
 +
constituted by the variables  $  T _ {ij} $(
 +
a determinant ideal). The set of zeros of the ideal  $  J _ {t} ( d , n ) $
 +
in the affine space  $  A  ^ {dn} = { \mathop{\rm Spec} } ( k [ ( T _ {ij} ) ] ) $
 +
is known as the determinant variety and is denoted by  $  D _ {t} ( d , n ) $.
 +
For any commutative  $  k $-
 +
algebra  $  k  ^  \prime  $
 +
the set of  $  k  ^  \prime  $-
 +
points of the determinant variety  $  D _ {t} ( d , n ) $
 +
coincides, in a natural manner, with the set of matrices of dimension  $  d \times n $
 +
and rank  $  < t $
 +
with coefficients in  $  k  ^  \prime  $.
 +
 
 +
The following are special cases of determinant varieties: $  D _ {d} ( d , n ) $
 +
is the hypersurface in  $  A ^ {d  ^ {2} } $
 +
defined by the vanishing of the determinant of a square matrix of dimension  $  d $
 +
consisting of independent variables (a determinant hypersurface); $  D _ {2} ( d , n ) $
 +
is an affine cone for the image of the Segre imbedding
 +
 
 +
$$
 +
P  ^ {d-1} \times P  ^ {n-1} \rightarrow  P  ^ {dn-1}
 +
$$
  
 
of the product of projective spaces [[#References|[2]]].
 
of the product of projective spaces [[#References|[2]]].
  
Determinant varieties have the following properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142025.png" /> is irreducible, reduced (i.e. the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142026.png" /> is simple), is a Cohen–Macaulay variety (cf. [[Cohen–Macaulay ring|Cohen–Macaulay ring]]), is normal, and the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142027.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142028.png" /> [[#References|[1]]], [[#References|[2]]]. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142029.png" /> is a Gorenstein scheme if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142030.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d03142031.png" /> (cf. [[Gorenstein ring|Gorenstein ring]]) [[#References|[5]]]. Determinant varieties are closely connected with Schubert varieties of a Grassmann manifold (cf. [[Schubert variety|Schubert variety]]).
+
Determinant varieties have the following properties: $  D _ {t} ( d , n ) $
 +
is irreducible, reduced (i.e. the ideal $  J _ {t} ( d , n ) $
 +
is simple), is a Cohen–Macaulay variety (cf. [[Cohen–Macaulay ring|Cohen–Macaulay ring]]), is normal, and the dimension of $  D _ {t} ( d , n ) $
 +
is equal to $  ( t - 1 ) ( n + d - 1 ) $[[#References|[1]]], [[#References|[2]]]. $  D _ {t} ( d , n ) $
 +
is a Gorenstein scheme if and only if $  t = 1 $
 +
or  $  d = n $ (cf. [[Gorenstein ring|Gorenstein ring]]) [[#References|[5]]]. Determinant varieties are closely connected with Schubert varieties of a Grassmann manifold (cf. [[Schubert variety|Schubert variety]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hochster,  J. Eagon,  "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci"  ''Amer. J. Math.'' , '''93''' :  4  (1971)  pp. 1020–1058</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kleiman,  J. Landolfi,  "Geometry and deformation of special Schubert varieties"  ''Compositio Math.'' , '''23'''  (1971)  pp. 407–434</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Laksov,  "Deformation of determinantal schemes"  ''Compositio Math.'' , '''30'''  (1975)  pp. 273–292</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C. Musili,  "Some properties of Schubert varieties"  ''J. Indian Math. Soc.'' , '''38'''  (1974)  pp. 131–145</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T. Svanes,  "Coherent cohomology on Schubert subschemes of flag schemes and applications"  ''Adv. in Math.'' , '''14'''  (1974)  pp. 369–453</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hochster,  J. Eagon,  "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci"  ''Amer. J. Math.'' , '''93''' :  4  (1971)  pp. 1020–1058</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kleiman,  J. Landolfi,  "Geometry and deformation of special Schubert varieties"  ''Compositio Math.'' , '''23'''  (1971)  pp. 407–434</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Laksov,  "Deformation of determinantal schemes"  ''Compositio Math.'' , '''30'''  (1975)  pp. 273–292</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C. Musili,  "Some properties of Schubert varieties"  ''J. Indian Math. Soc.'' , '''38'''  (1974)  pp. 131–145</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T. Svanes,  "Coherent cohomology on Schubert subschemes of flag schemes and applications"  ''Adv. in Math.'' , '''14'''  (1974)  pp. 369–453</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 17:28, 26 December 2020


The set of matrices $ D _ {t} ( d , n ) $ of dimension $ d \times n $ and of a rank lower than $ t $, with the structure of an algebraic variety. Let $ J _ {t} ( d , n ) $ be the ideal in the ring of polynomials

$$ k \left [ ( T _ {ij} ) _ {\begin{array} {l} 1 \leq i \leq d \\ 1 \leq j\leq n \end{array} } \right ] , $$

with coefficients in a field $ k $, generated by the $ t $- order minors of the matrix of dimension $ d \times n $ constituted by the variables $ T _ {ij} $( a determinant ideal). The set of zeros of the ideal $ J _ {t} ( d , n ) $ in the affine space $ A ^ {dn} = { \mathop{\rm Spec} } ( k [ ( T _ {ij} ) ] ) $ is known as the determinant variety and is denoted by $ D _ {t} ( d , n ) $. For any commutative $ k $- algebra $ k ^ \prime $ the set of $ k ^ \prime $- points of the determinant variety $ D _ {t} ( d , n ) $ coincides, in a natural manner, with the set of matrices of dimension $ d \times n $ and rank $ < t $ with coefficients in $ k ^ \prime $.

The following are special cases of determinant varieties: $ D _ {d} ( d , n ) $ is the hypersurface in $ A ^ {d ^ {2} } $ defined by the vanishing of the determinant of a square matrix of dimension $ d $ consisting of independent variables (a determinant hypersurface); $ D _ {2} ( d , n ) $ is an affine cone for the image of the Segre imbedding

$$ P ^ {d-1} \times P ^ {n-1} \rightarrow P ^ {dn-1} $$

of the product of projective spaces [2].

Determinant varieties have the following properties: $ D _ {t} ( d , n ) $ is irreducible, reduced (i.e. the ideal $ J _ {t} ( d , n ) $ is simple), is a Cohen–Macaulay variety (cf. Cohen–Macaulay ring), is normal, and the dimension of $ D _ {t} ( d , n ) $ is equal to $ ( t - 1 ) ( n + d - 1 ) $[1], [2]. $ D _ {t} ( d , n ) $ is a Gorenstein scheme if and only if $ t = 1 $ or $ d = n $ (cf. Gorenstein ring) [5]. Determinant varieties are closely connected with Schubert varieties of a Grassmann manifold (cf. Schubert variety).

References

[1] M. Hochster, J. Eagon, "Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci" Amer. J. Math. , 93 : 4 (1971) pp. 1020–1058
[2] S. Kleiman, J. Landolfi, "Geometry and deformation of special Schubert varieties" Compositio Math. , 23 (1971) pp. 407–434
[3] D. Laksov, "Deformation of determinantal schemes" Compositio Math. , 30 (1975) pp. 273–292
[4] C. Musili, "Some properties of Schubert varieties" J. Indian Math. Soc. , 38 (1974) pp. 131–145
[5] T. Svanes, "Coherent cohomology on Schubert subschemes of flag schemes and applications" Adv. in Math. , 14 (1974) pp. 369–453

Comments

Many geometrical properties of determinant varieties can be found in [a1]. Instead of determinant variety, etc. one also speaks of determinantal variety, etc.

References

[a1] T.G. Room, "Geometry of determinantal loci" , Cambridge Univ. Press (1938)
How to Cite This Entry:
Determinant variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Determinant_variety&oldid=16799
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article