Namespaces
Variants
Actions

Difference between revisions of "Denjoy integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: accent)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The narrow (special) Denjoy integral is a generalization of the Lebesgue integral. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310201.png" /> is said to be integrable in the sense of the narrow (special, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310204.png" />) Denjoy integral on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310205.png" /> if there exists a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310206.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310207.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310208.png" /> almost everywhere, and if for any perfect set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d0310209.png" /> there exists a portion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102010.png" /> on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102011.png" /> is absolutely continuous and where
+
{{TEX|done}}
 +
The narrow (special) Denjoy integral is a generalization of the Lebesgue integral. A function $f$ is said to be integrable in the sense of the narrow (special, $D^*$) Denjoy integral on $[a,b]$ if there exists a continuous function $F$ on $[a,b]$ such that $F'=f$ almost everywhere, and if for any perfect set $P$ there exists a portion of $P$ on which $F$ is absolutely continuous and where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102012.png" /></td> </tr></table>
+
$$\sum_n\omega(F;(\alpha_n,\beta_n))<\infty,$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102013.png" /> is the totality of intervals contiguous to that portion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102015.png" /> is the oscillation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102016.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102017.png" />;
+
where $\{(\alpha_n,\beta_n)\}$ is the totality of intervals contiguous to that portion of $P$ and $\omega(F;(\alpha,\beta))$ is the oscillation of $F$ on $(\alpha,\beta)$;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102018.png" /></td> </tr></table>
+
$$(D^*)\int\limits_a^bf(x)dx=F(b)-F(a).$$
  
 
This generalization of the Lebesgue integral was introduced by A. Denjoy
 
This generalization of the Lebesgue integral was introduced by A. Denjoy
  
who showed that his integral reproduces the function with respect to its pointwise finite derivative. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102019.png" /> integral is equivalent to the [[Perron integral|Perron integral]].
+
who showed that his integral reproduces the function with respect to its pointwise finite derivative. The $D^*$ integral is equivalent to the [[Perron integral|Perron integral]].
  
The wide (general) Denjoy integral is a generalization of the narrow Denjoy integral. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102021.png" /> is said to be integrable in the sense of the wide (general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102023.png" />) Denjoy integral on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102024.png" /> if there exists a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102025.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102026.png" /> such that its [[Approximate derivative|approximate derivative]] is almost everywhere equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102027.png" /> and if, for any perfect set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102028.png" />, there exists a portion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102029.png" /> on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102030.png" /> is absolutely continuous; here
+
The wide (general) Denjoy integral is a generalization of the narrow Denjoy integral. A function $f$ is said to be integrable in the sense of the wide (general, $D$) Denjoy integral on $[a,b]$ if there exists a continuous function $F$ on $[a,b]$ such that its [[Approximate derivative|approximate derivative]] is almost everywhere equal to $f$ and if, for any perfect set $P$, there exists a portion of $P$ on which $F$ is absolutely continuous; here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102031.png" /></td> </tr></table>
+
$$(D)\int\limits_a^bf(x)dx=F(b)-F(a).$$
  
 
Introduced independently, and almost at the same time, by Denjoy
 
Introduced independently, and almost at the same time, by Denjoy
  
and A.Ya. Khinchin , . The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102032.png" /> integral reproduces a continuous function with respect to its pointwise finite approximate derivative.
+
and A.Ya. Khinchin , . The $D$ integral reproduces a continuous function with respect to its pointwise finite approximate derivative.
  
A totalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102034.png" /> is a constructively defined integral for solving the problem of constructing a generalized Lebesgue integral which would permit one to treat any convergent trigonometric series as a Fourier series (with respect to this integral). Introduced by Denjoy .
+
A totalization $(T_{2s})_0$ is a constructively defined integral for solving the problem of constructing a generalized Lebesgue integral which would permit one to treat any convergent trigonometric series as a Fourier series (with respect to this integral). Introduced by Denjoy .
  
A totalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102036.png" /> differs from a totalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102037.png" /> by the fact that the definition of the latter totalization involves an approximate rather than an ordinary limit. Denjoy [[#References|[5]]] also gave a descriptive definition of a totalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102038.png" />. For relations between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102040.png" /> and other integrals, see [[#References|[6]]].
+
A totalization $(T_{2s})$ differs from a totalization $(T_{2s})_0$ by the fact that the definition of the latter totalization involves an approximate rather than an ordinary limit. Denjoy [[#References|[5]]] also gave a descriptive definition of a totalization $(T_{2s})$. For relations between $(T_{2s})_0$ and $(T_{2s})$ and other integrals, see [[#References|[6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  A. Denjoy,  "Une extension de l'integrale de M. Lebesgue"  ''C.R. Acad. Sci.'' , '''154'''  (1912)  pp. 859–862</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  A. Denjoy,  "Calcul de la primitive de la fonction dérivée la plus générale"  ''C.R. Acad. Sci.'' , '''154'''  (1912)  pp. 1075–1078</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Denjoy,  "Sur la dérivation et son calcul inverse"  ''C.R. Acad. Sci.'' , '''162'''  (1916)  pp. 377–380</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.Ya. [A.Ya. Khinchin] Khintchine,  "Sur une extension de l'integrale de M. Denjoy"  ''C.R. Acad. Sci.'' , '''162'''  (1916)  pp. 287–291</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.Ya. Khinchin,  "On the process of Denjoy integration"  ''Mat. Sb.'' , '''30'''  (1918)  pp. 543–557  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Denjoy,  "Leçons sur le calcul des coefficients d'une série trigonométrique" , '''1–4''' , Gauthier-Villars  (1941–1949)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I.A. Vinogradova,  V.A. Skvortsov,  "Generalized Fourier series and integrals"  ''J. Soviet Math.'' , '''1'''  (1973)  pp. 677–703  ''Itogi Nauk. Mat. Anal. 1970''  (1971)  pp. 65–107</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)</TD></TR></table>
+
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  A. Denjoy,  "Une extension de l'intégrale de M. Lebesgue"  ''C.R. Acad. Sci.'' , '''154'''  (1912)  pp. 859–862</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  A. Denjoy,  "Calcul de la primitive de la fonction dérivée la plus générale"  ''C.R. Acad. Sci.'' , '''154'''  (1912)  pp. 1075–1078</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Denjoy,  "Sur la dérivation et son calcul inverse"  ''C.R. Acad. Sci.'' , '''162'''  (1916)  pp. 377–380</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.Ya. [A.Ya. Khinchin] Khintchine,  "Sur une extension de l'integrale de M. Denjoy"  ''C.R. Acad. Sci.'' , '''162'''  (1916)  pp. 287–291</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.Ya. Khinchin,  "On the process of Denjoy integration"  ''Mat. Sb.'' , '''30'''  (1918)  pp. 543–557  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Denjoy,  "Leçons sur le calcul des coefficients d'une série trigonométrique" , '''1–4''' , Gauthier-Villars  (1941–1949)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I.A. Vinogradova,  V.A. Skvortsov,  "Generalized Fourier series and integrals"  ''J. Soviet Math.'' , '''1'''  (1973)  pp. 677–703  ''Itogi Nauk. Mat. Anal. 1970''  (1971)  pp. 65–107</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)</TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
Just as the Lebesgue integral allows one to compute the mass corresponding to some density function, the Denjoy integral (called totalization by Denjoy also in the case 1) or 2)) allows one to compute the primitive (defined up to a constant) of some function. And, whereas for smooth functions calculating primitives is the usual way of calculating masses, in the general case the calculus of primitives (in the sense of 1) or 2)) depends on and is more involved than the calculus of masses. Denjoy gave a constructive scheme (one for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102041.png" /> and a similar one for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102042.png" />) to calculate when possible the totalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102043.png" /> of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102044.png" /> by induction over the countable ordinal numbers, something which does not exist for similar integrals like Perron's integral: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102045.png" /> has a totalization (for example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102046.png" /> is the derivative in case 1), or the approximate derivative in case 2), of some function) the construction stops at some countable ordinal number and gives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102047.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102048.png" /> does not have a totalization, the construction never stops before <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031020/d03102049.png" />. This constructive scheme uses the [[Lebesgue integral|Lebesgue integral]], and two ways of defining  "improper"  integrals coming from the theory of the [[Riemann integral|Riemann integral]] for unbounded functions and due, respectively, to A.L. Cauchy and A. Harnack. For details see [[#References|[7]]] or [[#References|[a1]]].
+
Just as the Lebesgue integral allows one to compute the mass corresponding to some density function, the Denjoy integral (called totalization by Denjoy also in the case 1) or 2)) allows one to compute the primitive (defined up to a constant) of some function. And, whereas for smooth functions calculating primitives is the usual way of calculating masses, in the general case the calculus of primitives (in the sense of 1) or 2)) depends on and is more involved than the calculus of masses. Denjoy gave a constructive scheme (one for $(D^*)$ and a similar one for $(D)$) to calculate when possible the totalization $F$ of a function $f$ by induction over the countable ordinal numbers, something which does not exist for similar integrals like Perron's integral: If $f$ has a totalization (for example, if $f$ is the derivative in case 1), or the approximate derivative in case 2), of some function) the construction stops at some countable ordinal number and gives $F$; if $f$ does not have a totalization, the construction never stops before $\aleph_1$. This constructive scheme uses the [[Lebesgue integral|Lebesgue integral]], and two ways of defining  "improper"  integrals coming from the theory of the [[Riemann integral|Riemann integral]] for unbounded functions and due, respectively, to A.L. Cauchy and A. Harnack. For details see [[#References|[7]]] or [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Choquet,  "Outils topologiques et métriques de l'analyse mathématique" , Centre Docum. Univ. Paris  (1969)  (Rédigé par C. Mayer)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Choquet,  "Outils topologiques et métriques de l'analyse mathématique" , Centre Docum. Univ. Paris  (1969)  (Rédigé par C. Mayer)</TD></TR></table>

Latest revision as of 09:42, 12 October 2023

The narrow (special) Denjoy integral is a generalization of the Lebesgue integral. A function $f$ is said to be integrable in the sense of the narrow (special, $D^*$) Denjoy integral on $[a,b]$ if there exists a continuous function $F$ on $[a,b]$ such that $F'=f$ almost everywhere, and if for any perfect set $P$ there exists a portion of $P$ on which $F$ is absolutely continuous and where

$$\sum_n\omega(F;(\alpha_n,\beta_n))<\infty,$$

where $\{(\alpha_n,\beta_n)\}$ is the totality of intervals contiguous to that portion of $P$ and $\omega(F;(\alpha,\beta))$ is the oscillation of $F$ on $(\alpha,\beta)$;

$$(D^*)\int\limits_a^bf(x)dx=F(b)-F(a).$$

This generalization of the Lebesgue integral was introduced by A. Denjoy

who showed that his integral reproduces the function with respect to its pointwise finite derivative. The $D^*$ integral is equivalent to the Perron integral.

The wide (general) Denjoy integral is a generalization of the narrow Denjoy integral. A function $f$ is said to be integrable in the sense of the wide (general, $D$) Denjoy integral on $[a,b]$ if there exists a continuous function $F$ on $[a,b]$ such that its approximate derivative is almost everywhere equal to $f$ and if, for any perfect set $P$, there exists a portion of $P$ on which $F$ is absolutely continuous; here

$$(D)\int\limits_a^bf(x)dx=F(b)-F(a).$$

Introduced independently, and almost at the same time, by Denjoy

and A.Ya. Khinchin , . The $D$ integral reproduces a continuous function with respect to its pointwise finite approximate derivative.

A totalization $(T_{2s})_0$ is a constructively defined integral for solving the problem of constructing a generalized Lebesgue integral which would permit one to treat any convergent trigonometric series as a Fourier series (with respect to this integral). Introduced by Denjoy .

A totalization $(T_{2s})$ differs from a totalization $(T_{2s})_0$ by the fact that the definition of the latter totalization involves an approximate rather than an ordinary limit. Denjoy [5] also gave a descriptive definition of a totalization $(T_{2s})$. For relations between $(T_{2s})_0$ and $(T_{2s})$ and other integrals, see [6].

References

[1a] A. Denjoy, "Une extension de l'intégrale de M. Lebesgue" C.R. Acad. Sci. , 154 (1912) pp. 859–862
[1b] A. Denjoy, "Calcul de la primitive de la fonction dérivée la plus générale" C.R. Acad. Sci. , 154 (1912) pp. 1075–1078
[2] A. Denjoy, "Sur la dérivation et son calcul inverse" C.R. Acad. Sci. , 162 (1916) pp. 377–380
[3] A.Ya. [A.Ya. Khinchin] Khintchine, "Sur une extension de l'integrale de M. Denjoy" C.R. Acad. Sci. , 162 (1916) pp. 287–291
[4] A.Ya. Khinchin, "On the process of Denjoy integration" Mat. Sb. , 30 (1918) pp. 543–557 (In Russian)
[5] A. Denjoy, "Leçons sur le calcul des coefficients d'une série trigonométrique" , 1–4 , Gauthier-Villars (1941–1949)
[6] I.A. Vinogradova, V.A. Skvortsov, "Generalized Fourier series and integrals" J. Soviet Math. , 1 (1973) pp. 677–703 Itogi Nauk. Mat. Anal. 1970 (1971) pp. 65–107
[7] S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)

Comments

Just as the Lebesgue integral allows one to compute the mass corresponding to some density function, the Denjoy integral (called totalization by Denjoy also in the case 1) or 2)) allows one to compute the primitive (defined up to a constant) of some function. And, whereas for smooth functions calculating primitives is the usual way of calculating masses, in the general case the calculus of primitives (in the sense of 1) or 2)) depends on and is more involved than the calculus of masses. Denjoy gave a constructive scheme (one for $(D^*)$ and a similar one for $(D)$) to calculate when possible the totalization $F$ of a function $f$ by induction over the countable ordinal numbers, something which does not exist for similar integrals like Perron's integral: If $f$ has a totalization (for example, if $f$ is the derivative in case 1), or the approximate derivative in case 2), of some function) the construction stops at some countable ordinal number and gives $F$; if $f$ does not have a totalization, the construction never stops before $\aleph_1$. This constructive scheme uses the Lebesgue integral, and two ways of defining "improper" integrals coming from the theory of the Riemann integral for unbounded functions and due, respectively, to A.L. Cauchy and A. Harnack. For details see [7] or [a1].

References

[a1] G. Choquet, "Outils topologiques et métriques de l'analyse mathématique" , Centre Docum. Univ. Paris (1969) (Rédigé par C. Mayer)
How to Cite This Entry:
Denjoy integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Denjoy_integral&oldid=12910
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article